
INTRODUCTION

The amygdala and medial prefrontal cortex (mPFC) are
structures that are engaged in the modulation of anxiety and fear
learning (1-4). Evidence strongly supports a role for the
basolateral amygdala (BLA) as a critical structure for the
formation and storage of fear memory (3-5). The central nucleus
of the amygdala (CeA) is required for the acquisition,
consolidation and expression of fear memories in parallel with
the BLA(1-3, 6). Corticotropin-releasing factor (CRF) has been
shown to play an important role within the amygdala in fear
learning processes by acting at the CRF1 and CRF2 receptors.
Stimulation of the CRF1 receptors induces hormonal and
behavioral stress-like responses (7-9). Mice lacking CRF1

receptors display reduced anxiety and selective CRF1 receptor
antagonists inhibit the anxiogenic action of CRF (10). The BLA
contains a high density of CRF1 receptors. In contrast, the CeA
contains many CRF-expressing neurons but lacks strong CRF
receptor expression (3, 11). The infusion of a CRF1 receptor
antagonist (DMP696) into the BLAdisrupts contextual fear
conditioning (12). Other studies have found that intra-CeA
infusion of a non-selective CRF antagonist (alpha-helical

CRF9–41) prior to contextual fear conditioning or administration
of the CRF antisense oligonucleotide at different time points
after contextual fear conditioning is effective at attenuating the
acquisition and expression of the fear response (3, 13-15).

The mPFC is recognized as important in mediating learning,
attention and emotional behavior (16-18). Rats given mPFC
lesions prior to training express a stronger fear reaction than
control rats (19). Immunocytochemical studies revealed that
CRF was present in the mPFC and was expressed in glutamate
decarboxylase-positive interneurons in the cerebral cortex (20-
21). In situ hybridization studies showed that CRF1 receptors
were found in large densities in the mPFC. Moreover, CRF
injection into the mPFC increased anxiety-like behavior in the
elevated plus maze in both acutely and repeatedly stressed
animals compared to vehicle (16).

GABA is the main inhibitory neurotransmitter in the central
nervous system. Its transmission in the amygdala is particularly
important for controlling fear and anxiety levels (22). Clinical
evidence suggests that alterations in normal GABAtransmission
might contribute to the pathophysiology of anxiety disorders in
humans. For instance, various studies using nuclear imaging
techniques have revealed diminished central GABAand GABA-
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A receptor activity in patients suffering from anxiety (panic
disorder) and trauma/stress-related disorders (posttraumatic
stress disorder) (22). GABAis synthesized from glutamate by
the enzyme glutamate decarboxylase (GAD), which exists in
two isoforms: GAD67 (thought be involved in GABAsynthesis)
and GAD65 (controls the synaptic release of GABA) (23-25).
Deletion of the GAD67 gene in mice resulted in a > 90%
reduction in the basal GABAlevels in the brain, whereas
GAD65-deleted homozygous mice expressed normal GABA
levels (22, 26-27). The preclinical study indicated that
alterations in the GAD67 levels might participate in the
development and/or expression of symptoms associated with
fear and anxiety (22).

The aim of this study was to examine the interaction between
the CRF system and the inhibitory neurotransmitter (GABA) in
the modulation of amygdala and prefrontal cortex activity in low-
and high-anxiety rats. Recently, we studied the central
mechanisms that are responsible for individual vulnerability to
stressors by employing a model that divided rats into high-
anxiety (HR) and low-anxiety (LR) groups (28-31). Our model is
based on differences in the expression of a conditioned fear to the
context. We did this on purpose, considering that in the clinic
there occur different types of anxiety, e.g. panic fear, phobias or
trauma (PTSD). Thus our model refers mainly to the post-
traumatic stress disorder. Different types of anxiety and
trauma/stress-related disorders are treated in a different way
using pharmacological or psychotherapeutic methods. This
indicates that the neurobiological mechanisms of various types of
anxiety are different at the level of cortical and limbic structures,
and only at the final point of execution of emotional reactions in
the structures like the brainstem and the hypothalamus, they show
a similar expression of behavioral and hormonal symptoms of
fear. Consequently, both populations of animals should be
defined as groups of HR and LR rats, in the model of a
conditioned fear. The division of HR and LR rats is validated and
justified by the results of many already published reports
indicating a different reactivity of HR and LR rats in different
models of chronic stress (immobilization stress, chronic
corticosterone) (28-31), and their different reactivity to the
ligands changing the activity of brain neurotransmitter systems
which regulate emotional reactions (GABA, 5-HT, CRF,
glutamate, glucocorticoid receptors) (32-34). Moreover, we
demonstrated in a recent study that LR rats were more sensitive
to re-exposure to fear stimuli and that midazolam pretreatment
was associated with the attenuation of brain activity in the
amygdala and prefrontal cortex (c-Fos and CRF
immunocytochemistry) in this group of animals (35). Based on
these data, in the present study, we tested the hypotheses that
animals with different vulnerabilities to fear stimuli would be
differentially sensitive to the effects of the non-peptide CRF1

antagonist (antalarmin) on amygdala-prefrontal cortex activity
and fear expression and that these effects would be accompanied
by changes in the local activity of the GABAergic system.

MATERIALS AND METHODS

Animals

The experiments were performed on 70 male Wistar rats
(200 – 220 g body weight), purchased from a licensed breeder
(The Center for Experimental Medicine of the Medical
University, 24ASklodowskiej-Curie Str., Bialystok, Poland) and
housed under standard laboratory conditions with a 12 h
light/dark cycle (lights on at 7 a.m.) at a constant temperature
(21 ± 2°C). The rats were group-housed, 4 per cage in the
polycarbonate cages (556 × 324 × 195 mm, floor area, 1875 cm2)

containing bedding (Lignocel; Hygienic Animal Bedding; JRS
GmbH + Co KG, Germany). Cages were cleaned and the
bedding replaced twice a week.

The experiments were performed in accordance with the
European Communities Council Directive of 24 November 1986
(86/609 EEC). The Local Committee for Animal Care and Use
at the Warsaw Medical University, Poland approved all
experimental procedures using animals.

Experimental protocol

After seven days of acclimatization to the vivarium, the
animals (n = 70) were subjected to a contextual fear-conditioning
test to assess individual responses to conditioned aversive stimuli
(28, 34). The rats were divided into low-anxiety (LR, n = 33) and
high-anxiety (HR, n = 34) groups based on the duration of their
conditioned freezing in a contextual fear test. Three rats did not
meet either criterion. 90 min after exposure to the first aversive
context, 6 animals from each group were decapitated (LRCFC - low
anxiety animals, n = 6; HRCFC - high-anxiety animals, n = 6) for
immunocytochemistry and biochemical analyses. The remaining
animals (HR, n = 28 and LR, n = 27) were housed in their home
cages for 28 days. Two rats from HR group and two rats from LR
group were excluded from the study, because of their bad physical
condition. Next, the HR (n = 26) and LR (n = 25) rats were
randomly divided into six experimental groups as follows: LRRe-

CFC - low anxiety animals pretreated with vehicle solution and
conditioned for a second time to the aversive context (n = 9);
LRAnt10 - low-anxiety rats administered antalarmin at a dose of 10
mg/kg and conditioned for a second time to the aversive context
(n = 8); LRAnt20 - low-anxiety rats administered antalarmin at a
dose of 20 mg/kg and conditioned for a second time to the
aversive context (n = 8); HRRe-CFC - high-anxiety animals
pretreated with vehicle solution and conditioned for a second time
to the aversive context (n = 10); HRAnt10 - high-anxiety rats
administered antalarmin at a dose of 10 mg/kg and conditioned for
a second time to the aversive context (n = 8); and HRAnt20 - high-
anxiety rats administered antalarmin at a dose of 20 mg/kg and
conditioned for a second time to the aversive context (n = 8). Next,
the animals were subjected to the contextual fear training and
retested. The rats receivedantalarminor vehicle injections 80 min
before the second contextual fear test. The animals were
decapitated ninety minutes after the second exposure to the
aversive context (180 min after drug administration) (Fig. 1).
Their brains were removed, frozen, and stored at –70°C for the
immunocytochemistry (GAD67 expression) and biochemistry
(GABA concentration) analyses (Fig. 2).

Contextual fear-conditioning test

The fear-conditioning experiment was performed using a
computerized fear-conditioning system (TSE, Bad Homburg,
Germany; FCS 04.11) in a Plexiglas cage (36 × 21 × 20 cm, w ×
l × h) with a steel foot-shock grid (the 38 floor bars were 0.4 cm
in diameter and spaced 0.5 cm apart) under constant white noise
(65 dB) and constant illumination (12 V, 10 W halogen lamp,
~150 l×). Freezing behavior was recorded using an infrared
photobeam system (10 Hz detection rate) controlled by the fear-
conditioning system. The photobeams were spaced 1.3 cm in the
direction of the x-axis and 2.5 cm in the direction of the y-axis.
This method and equipment have been used in our and other
laboratories for years and have been validated
pharmacologically using many clinically effective and
experimental anxiolytic and anxiogenic agents (36-37).

The total duration of inactivity was calculated by the fear-
conditioning system. The total duration was defined as no
interruption of any photobeam over a 5-s period; these periods
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Habituation to the vivarium 

Contextual fear conditioning test, the rats were divided in two groups: 

HR (n = 34) – the mean duration of freezing + 1 S.E.M. (> 240.48 s)  

LR (n = 33) – the mean duration of freezing – 1 S.E.M. (< 209.02 s) 

 90 min later, 6 animals from each groups were decapitated for 

immunocytochemical and biochemical analysis  

     (HRCFC, n = 6; LRCFC, n = 6)

Contextual fear conditioning training 

Contextual fear conditioning training 

The HR and LR rats were divided in 6 groups:  

HRRe-CFC, n = 10; LRRe-CFC, n = 9; 

HRAnt10, n = 8; LRAnt10, n = 8; 

HRAnt20, n = 8; LRAnt20, n = 8 

Contextual fear conditioning habituation 

Fig. 1. Scheme of the experiment. HR – high-anxiety rats; LR – low-anxiety rats; HRCFC – high-anxiety animals after the first
contextual fear test; LRCFC – low anxiety animals after the first contextual fear test; HRRe-CFC– high-anxiety animals pretreated with
vehicle solution, and conditioned for a second time to the aversive context; LRRe-CFC – low anxiety animals pretreated with vehicle
solution, and conditioned for a second time to the aversive context; HRAnt10 – high-anxiety rats administered with antalarmin at a dose
of 10 mg/kg, and conditioned for a second time to the aversive context; HRAnt20 – high-anxiety rats administered with antalarmin at a
dose of 20 mg/kg, and conditioned for a second time to the aversive context; LRAnt10 – low-anxiety rats administered with antalarmin
at a dose of 10 mg/kg, and conditioned for a second time to the aversive context; LRAnt20 – low-anxiety rats administered with
antalarmin at a dose of 20 mg/kg, and conditioned for a second time to the aversive context. For more details, see the experimental
procedure.

Fig. 2. (A) Schematic view of brain
regions analyzed for
immunocytochemistry. (B) Schematic
view of brain regions used for
biochemical study. The number
indicates the distance from bregma
(mm). AMY – amygdala complex, BA
– basal nucleus of the amygdala, CeA–
central nucleus of the amygdala, CPU
– striatum, IL– infralimbic cortex, LA
– lateral nucleus of the amygdala, PFC
– prefrontal cortex, PL– prelimbic
cortex. The marked areas indicated
regions of tissue collections.



were summarized for the entire experimental session to yield the
total freezing time. The box was cleaned with 95% ethanol after
each trial. The testing was performed from 8.30 to 12.00. The
animals were transported from the vivarium to the experimental
room in pairs, and 3 hours after the end of the experiment the rats
returned to the vivarium. The experiment was performed on three
consecutive days in the same testing box and experimental
chamber. On the first day, the animals were placed separately for 2
min in a training box without aversive stimulation to adapt to the
experimental conditions. On the second day (a training day), the
animals were placed for 10 min in the training box. After 5 min of
sitting undisturbed in the box, the rat received 4 footshocks (0.7
mA) delivered through the stainless steel floor grid, lasting for 1 s
each, with 59 s breaks between stimuli, for final 5 min. The animals
were removed from the testing boxes 1 min after the last shock was
delivered. On the third experimental day, the freezing behavior of
rats was observed for 10 min in the same box. The conditioned
response (freezing reaction) was analyzed and recorded by the fear-
conditioning system. The absolute duration of inactivity was
calculated from the activity plots and expressed as the total time
during which the animals were inactive. The computerized method
is based on the latency between the photobeam interruption
measures obtained during the contextual fear-conditioning tests,
which is highly correlated with hand-scored freezing (r values
ranged from 0.87 to 0.94) (38-39). The rats were divided into two
experimental groups according to the duration of the context-
induced freezing responses. The LR group had a total duration of
freezing responses at least one S.E.M or more below the mean
value (224.75 – 15.73, i.e., < 209.02 s). The HR group had a total
duration of freezing responses at least one S.E.M or more above the
mean value (224.75 + 15.73, i.e., > 240.48 s). The mean value of
freezing for the LR group = 98.18 s and for HR group = 345.88 s.
Three rats did not meet either criterion.

Drug treatment

Antalarmin hydrochloride (N-butyl-N-ethyl-2,5,6-trimethyl-
7-(2,4,6-trimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine
hydrochloride, Tocris Bioscience, Bristol, United Kingdom) was
suspended in a vehicle composed of 10% Tween 80 and distilled
water and administered intraperitoneally (i.p.) in a 1 ml/kg
injection volume. The injection doses and timing were selected
based on previous studies (40-41). For vehicle injection, 10%
Tween 80 alone was administered in the same volume.

Immunocytochemistry of GAD67

The immunocytochemical reaction was performed on slide-
mounted frozen brain sections. Based on the atlas of Paxinos and
Watson (42), coronal 15µm cryostat slices were cut, mounted on
silane-coated slides and fixed in cold methanol for 10min. In the
study, three slices from each section per animal were taken for
immunostaining (Fig. 2A), and the rest of the tissue samples
were used for biochemical analysis of the GABAconcentration
(see below) (Fig. 2B). The specimens were washed twice (2 × 15
min) in 0.01 M PBS solution (pH 7.4), incubated in a 3%
hydrogen peroxide (H2O2) solution for 30 min to block the
activity of endogenous peroxidase, washed twice again (2 × 15
min) in 0.01 M PBS and incubated in a 3% normal horse serum
blocking solution. Subsequently, the slide-mounted brain
sections were incubated with a rabbit polyclonal antibody
directed against GAD67 (1:200, Santa Cruz) at 4 – 8°C for 72h.
Following incubation, the slides were washed in 0.01 M PBS
three times (3 × 15 min) and detected with peroxidase-
conjugated anti-rabbit IgG (1:1000, ImmunoJackson Research).
The peroxidase reaction was developed with DAB (0.2mg/ml)
and hydrogen peroxide (0.003%) in Tris buffer. The sections

were dehydrated by serial alcohol rinsing, cleared in xylene, and
coverslipped in a histofluid mounting medium. Western blotting
analysis confirmed the specific binding of the antibodies.

Cells counts were assessed by light microscopy (Olympus
BX-51 light microscope, DP-70 digital camera) at a total
magnification of ×100. The number of positive cells was counted
with a computerized image analysis system (Olympus CellSens
software, Munster, Germany) in the following subregions: AP
3.20: infralimbic cortex (IL) and prelimbic cortex (PL) and AP(–)
2.80: basal nucleus of the amygdala (BA), central nucleus of the
amygdala (CeA), and lateral nucleus of the amygdala (LA) (42).
The total number of positive cells was manually counted for each
region of each rat brain as shown as Fig. 2A and expressed as the
number of positive nuclei per 1 mm2. An independent researcher
blinded to the groups to which the rats had been assigned
performed the analysis.

Biochemical analysis of the GABA concentration

After serial sections were cut for the immunocytochemistry
analysis, the anatomical structures of the cortex (bregma 3.20 –
2.20) and the amygdala (bregma –2.80 – –3.30) were
micropunched under a dissecting microscope as shown as Fig.
2B. Each tissue was weighed (the average weight was 11 mg),
placed in a dry ice-cooled polypropylene vial, and homogenized
with a polytron-type homogenizer (30 s, 4°C) in a solution
containing perchloric acid (0.2 M). The homogenates were
centrifuged (26,880 × g at 4°C for 8 min) and the supernatants
were filtered through Syringe Driven Filter Units (Millipore)
prior to the analysis.

HPLC analysis of GABAwas performed using a Luna 5 µm
C18(2) 100A(250 × 4.6 mm) reverse phase column according to
the previously described procedure (43). The compounds were
eluted isocratically with the mobile phase delivered at 0.70
ml/min using a Shimadzu Clas VP LC 10AD pump. An
electrochemical detector with a flow-through cell (Intro-
AntecLeyden) linked to the Shimadzu Class VP Integrator SCL-
10 Avp was used. A high-density glass carbon-working electrode
(Antec) was operated at +0.85 V. A rheodyne injection valve with
a 20-µl sample loop was used to manually inject the samples. The
preparation of the mobile phase and the derivatizing agents were
based on the method of Rowley et al. (44) with some
modifications. The mobile phase consisted of 45 mM disodium
phosphate and 0.15 mM ethylenediaminetetraacetic acid (EDTA)
with 24% methanol (v/v) in water adjusted to pH 3.9 with 0.2 M
citric acid. Then, the mobile phase was filtered through a 0.45 µm
filter and degassed for 15 min. A stock solution (0.01 M) of the
GABA standard was prepared in double-deionized water and kept
at 4°C for five days. The standard was prepared in polyethylene
vials to prevent adhesion to the glass. Working solutions were
prepared daily by diluting the stock solution. To obtain agents for
derivatization, o-phthaldialdehyde (OPA, 22 mg, Fluka) was
dissolved in 0.5 ml of 1 M sodium sulfite, 0.5 ml of methanol,
and 0.9 ml of sodium tetraborate buffer (0.1 M) adjusted to pH
10.4 with 5 M sodium hydroxide. The derivatization reaction was
performed at room temperature. The derivatizing agent (20 µl)
was reacted with 1 ml of the GABAstandard for 15 min in a
polyethylene vial prior to injection onto the column. The GABA
concentration was calculated in µM.

Statistical analysis

The data are shown as the means and standard errors of the
mean (S.E.M). To verify the differences between the HR and LR
groups in the contextual fear-conditioning test, we used Student’s t
test. In the first part of the study, we performed the analysis for the
first and second contextual fear conditioning test to determine how
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fear re-conditioning affected the behavior and local GABAactivity
in the HR and LR rats. In the second part of the study, we
performed the analysis to determine how antalarmin administration
modulated the behavioral and biochemical activity after the second
contextual fear test in the HR and LR rats. In the analysis of the
different brain structures, the number of the analyzed animals may
be different from the number of animals in the test group, because
for technical reasons some brain sections slices were lost. The data
were analyzed by two-way ANOVA followed by the most
conservative Tukey’s post hoc test. A probability value of P< 0.05
was considered significant in this study. The statistical analyses
were performed using Stat-Soft Statistica 12.0 for Windows
(StatSoft Inc., USA).

RESULTS

Contextual fear-conditioning test

Student’s t-test did not revealed a significantly differences
between LR and HR groups in the 5 min pre-shock period (t =
0.04, df = 65, P> 0.1) (Fig. 3A). Student’s t-test revealed a
significantly weaker freezing response in the LR group compared
to the HR group (t = 15.70, df = 65, P< 0.01) (Fig. 3B).

The effects of fear re-conditioning

1. Contextual fear-conditioning test

Two-way ANOVA revealed significant differences in the
freezing durations between the experimental groups (LRCFC, LRRe-

CFC, HRCFC, HRRe-CFC): group effect [F(1,27) = 35.95 (P< 0.01)],
fear effect [F(1,27) = 14.48 (P< 0.01)], and group x fear
interaction effect [F(1,27) = 4.51 (P< 0.05)]. Tukey’s post hoc test
revealed a lower freezing duration in the LRCFC group compared
with the HRCFC group (P< 0.01) and in the LRRe-CFC group
compared with the HRRe–CFCgroup (P< 0.05). The post hoc test
also indicated a much higher freezing duration in the LRRe–CFC

group compared with the LRCFC group (P<0.01) (Fig. 4A).

2. GAD67 expression

In the IL, two-way ANOVA did not reveal significant
differences between the experimental groups (LRCFC, LRRe-CFC,
HRCFC, HRRe-CFC): no group effect [F(1,27) = 1.08 (P> 0.1)], no
fear effect [F(1,27) = 2.04 (P> 0.1)], and no group × fear
interaction effect [F(1,27) = 0.75 (P> 0.1)] (Fig. 4B).

In the PL, two-way ANOVA revealed significant differences
between groups (LRCFC, LRRe-CFC, HRCFC, HRRe-CFC): group effect
[F(1,26) = 4.76 (P< 0.05)], fear effect [F(1,26) = 31.81 (P< 0.01)],
but no group × fear interaction effect [F(1,26) = 1.72 (P> 0.1)]
(Fig. 4C).

In the LA, two-way ANOVA revealed significant differences
between groups (LRCFC, LRRe-CFC, HRCFC, HRRe-CFC): fear effect
[F(1,27) = 8.17 (P< 0.01)], group × fear interaction effect
[F(1,27) = 7.57 (P< 0.05)], and no group effect [F(1,27) = 0.01
(P > 0.1)]. Tukey’s post hoc test revealed a decrease in the
number of GAD67-positive nuclei in the LRRe-CFC group
compared with the LRCFC group (P< 0.01) (Fig. 4D).

In the BA, two-way ANOVA revealed significant differences
between groups (LRCFC, LRRe-CFC, HRCFC, HRRe-CFC): fear effect
[F(1,26) = 52.38 (P< 0.01)] but no group effect [F(1,26) = 0.06
(P> 0.1)] and no group × fear interaction effect [F(1,26) = 0.03
(P> 0.1)] (Fig. 4E).

In the CeA, two-way ANOVA revealed significant differences
between groups (LRCFC, LRRe-CFC, HRCFC, HRRe-CFC): group effect
[F(1,25) = 30.11 (P < 0.01)], fear effect [F(1,25) = 25.12 (P<
0.01)], and group × fear interaction effect [F(1,25) = 7.97 (P<
0.01)]. Tukey’s post hoc test revealed lower GAD67 expression in
the HRCFC group than in the LRCFC group (P< 0.01) and in the
LRRe-CFCgroup than in the LRCFC group (P< 0.01) (Fig. 4F).

The effects of antalarmin pretreatment

1. Contextual fear-conditioning test

Two-way ANOVA revealed significant differences in the
freezing duration between the experimental groups (LRRe-CFC,
LRAnt10, LRAnt20, HRRe-CFC, HRAnt10, HRAnt20): drug effect [F(1,45) =
11.28 (P< 0.01)], group × drug interaction effect [F(1,45) = 7.64
(P< 0.01)], but no group effect [F(1,45) = 1.30 (P> 0.1)]. Tukey’s
post hoc test revealed a lower freezing duration in the HRAnt10 group
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Fig. 3. (A) Freezing duration in the 5 min pre-shock period in the
contextual fear test (training day). (B) Freezing duration in the
contextual fear test (10 min – test day). The data are shown as
the means + S.E.M. HR – high-anxiety rats (n = 34), LR – low-
anxiety rats (n = 33). **P< 0.01, differs from HR. For more
details, see the experimental procedure.



compared with the HRRe-CFC group (P< 0.01), and in the HRAnt20

group compared with the HRRe-CFCgroup (P< 0.05) (Fig. 5A).

2. GAD67 expression

In the IL, two-way ANOVA revealed significant differences
between groups (LRRe-CFC, LRAnt10, LRAnt20, HRRe-CFC, HRAnt10,
HRAnt20): group effect [F(1,44) = 4.99 (P< 0.05)], but no drug
effect [F(1,44) = 1.61 (P> 0.1)], and no group × drug interaction
effect [F(1,44) = 0.96 (P> 0.1)] (Fig. 5B).

In the PL, two-way ANOVA revealed significant differences
between groups (LRRe-CFC, LRAnt10, LRAnt20, HRRe-CFC, HRAnt10,
HRAnt20): drug effect [F(1,43) = 3.25 (P< 0.05)], group × drug
interaction effect [F(1,43) = 6.09 (P< 0.01)], but no group effect
[F(1,43) = 0.02 (P> 0.1)]. Tukey’s post hoc revealed higher GAD67
expression in the HRAnt10 group compared with the HRRe-CFC and
HRAnt20 groups (P< 0.01 and P< 0.05, respectively) (Fig. 5C).

In the LA, two-way ANOVA revealed significant differences
between groups (LRRe-CFC, LRAnt10, LRAnt20, HRRe-CFC, HRAnt10,
HRAnt20): drug effect [F(1,44) = 3.74 (P< 0.05)], but no group

effect [F(1,44) = 1.17 (P> 0.1)] and no group × drug interaction
effect [F(1,44) = 1.12 (P> 0.1)] (Fig. 5D).

In the BA, two-way ANOVA revealed significant differences
between groups (LRRe-CFC, LRAnt10, LRAnt20, HRRe-CFC, HRAnt10,
HRAnt20): drug effect [F(1,43) = 3.94 (P< 0.05)], but no group
effect [F(1,43) = 0.14 (P> 0.1)] and no group × drug interaction
effect [F(1,43) = 0.06 (P> 0.1)] (Fig. 5E).

In the CeA, two-way ANOVA revealed significant
differences between groups (LRRe-CFC, LRAnt10, LRAnt20, HRRe-CFC,
HRAnt10, HRAnt20): drug effect [F(1,41) = 7.31 (P< 0.01)], group
× drug interaction effect [F(1,41) = 9.93 (P< 0.01)], but no
group effect [F(1,41) = 0.83 (P> 0.1)]. Tukey’s post hoc test
revealed higher GAD67 expression in the HRAnt10 group
compared with the HRRe-CFC (P < 0.01), LRAnt10 (P < 0.05), and
HRAnt20 (P< 0.05) groups (Fig. 5F and 6).

3. GABA concentration

In the cortex, two-way ANOVA revealed significant
differences between groups (LRRe-CFC, LRAnt10, LRAnt20, HRRe-CFC,
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Fig. 4. (A) Freezing duration in the
contextual fear test after the first and
second contextual fear test. (B-F)
GAD67 expression 90 min after the
first and second contextual fear test.
The data show the number of
immunoreactive neurons per 1 mm2.
BA – basal nucleus of the amygdala,
CeA – central nucleus of the
amygdala, IL– infralimbic cortex, LA
– lateral nucleus of the amygdala, PL
– prelimbic cortex. HRCFC – high-
anxiety animals after the first
contextual fear test, n = 6 (A-F);
LRCFC – low anxiety animals after the
first contextual fear test, n = 6 (A-F);
HRRe-CFC – high-anxiety animals
pretreated with vehicle solution, and
conditioned for a second time to the
aversive context, n = 8 (F), n = 9 (C,
E), n = 10 (A, B, D); LRRe-CFC – low
anxiety animals pretreated with
vehicle solution, and conditioned for a
second time to the aversive context, n
= 9 (A-F). The data are shown as the
means + S.E.M. **P< 0.01, differs
from LRCFC; #P < 0.05, differs from
HRRe-CFC. For more details, see the
experimental procedure.



HRAnt10, HRAnt20): drug effect [F(1,37) = 15.87 (P< 0.01)] but no
group effect [F(1,37) = 0.01 (P> 0.1)] and no group × drug
interaction effect [F(1,37) = 2.40 (P> 0.1)] (Fig. 7A).

In the amygdala, two-way ANOVA revealed significant
differences between the experimental groups (LRRe-CFC, LRAnt10,
LRAnt20, HRRe-CFC, HRAnt10, HRAnt20): drug effect [F(1,39) = 6.22 (P
< 0.01)], group × drug interaction effect [F(1,39) = 3.25 (P<
0.05)], but no group effect [F(1,39) = 2.17 (P> 0.1)]. Tukey’s post
hoc test revealed a higher GABAconcentration in the HRAnt10

group compared with the HRRe-CFCgroup (P< 0.01) (Fig. 7B).

DISCUSSION

In the present study, we found that fear re-conditioning
increased the freezing duration compared with the first
conditioned fear response in the LR group, similar to our
previous report (Fig. 4) (35). However, the behavioral response
of these animals remained lower compared with the HR group.
The behavioral changes in the LRRe-CFC rats were accompanied

by decreased GAD67 expression in the LAand CeAcompared
with the LRCFC group. Pretreatment of the rats with antalarmin
(10 mg/kg or 20 mg/kg), prior to the second exposure to the
aversive context, decreased the conditioned fear response only in
the HR group (Fig. 5). The behavioral effect of the lower dose
(10 mg/kg) of antalarmin was accompanied by increased the
GAD67 expression in the PLand CeA(Fig. 5) and GABA
concentration in the amygdala, in the HR group (Fig. 7).

The effect of fear re-conditioning on rat behavior and
GABAergic system activity in the amygdala of the high- and
low-anxiety rats

Fear re-conditioning significantly increased the freezing
duration in the LR rats compared with the first conditioned fear
response. In the HR rats, the second exposure to the aversive
context also increased the freezing duration, albeit not
significantly (the mean value of the freezing duration for the
HRCFC group = 310.00 s, and for the HRRe-CFC group = 359.10 s).
This effect confirms the result of our previous study that the LR
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Fig. 5. (A) The influence of antalarmin
pretreatment on rat behavioral in the
second conditioned fear test. (B-F)
GAD67 expression 180 min after
antalarmin administration and 90 min
after exposure to the conditioning
boxes. The data show the number of
immunoreactive neurons per 1 mm2.
BA – basal nucleus of the amygdala,
CeA– central nucleus of the amygdala,
IL – infralimbic cortex, LA– lateral
nucleus of the amygdala, PL–
prelimbic cortex. HRRe-CFC – high-
anxiety animals pretreated with vehicle
solution, and conditioned for a second
time to the aversive context, n = 8 (F),
n = 9 (C, E), n = 10 (A, B, D); HRAnt10

– high-anxiety rats administered with
antalarmin at a dose of 10 mg/kg, and
conditioned for a second time to the
aversive context, n = 8 (A-F); HRAnt20 –
high-anxiety rats administered with
antalarmin at a dose of 20 mg/kg, and
conditioned for a second time to the
aversive context, n = 8 (A-F); LRRe-CFC

– low anxiety animals pretreated with
vehicle solution, and conditioned for a
second time to the aversive context, n =
9 (A-F); LRAnt10 – low-anxiety rats
administered with antalarmin at a dose
of 10 mg/kg, and conditioned for a
second time to the aversive context, n =
7 (F), n = 8 (A-E); LRAnt20 – low-
anxiety rats administered with
antalarmin at a dose of 20 mg/kg, and
conditioned for a second time to the
aversive context, n = 7 (B-F), n = 8
(A). The data are shown as the means +
S.E.M. *P< 0.05, **P< 0.01, differs
from HRRe-CFC; #P < 0.05, differs from
HRAnt20; &P< 0.05, differs from LRAnt10.
For more details, see the experimental
procedure.



rats appeared to be more sensitive to re-exposure to the
contextual fear stimuli. In this group of animals, the fear re-
conditioning increased neuronal activity in the amygdala and
decreased neuronal activity in the prefrontal cortex (c-Fos and
CRF immunocytochemistry) (35). In the current study, we
showed that a second exposure to the aversive context also
decreased GABAergic neurotransmission (measured by GAD67
expression) in the LAand CeAin the LR rats.

Our findings are consistent with other data indicating the
important role of amygdala GABAinnervation in fear memory
processing. It was found that, during acquisition and consolidation
of fear memory, fear conditioning decreases the extracellular
GABA levels in the BLAand reduces the mRNAlevel of the

GABA-synthesizing enzyme GAD67 in the amygdala (2, 45-46).
Reduced GAD67 expression during acquisition may be associated
with a loss of inhibitory control of the amygdala, thereby
contributing to the hyperactivity or prolonged activation of this
limbic nucleus (45, 47). Accordingly, in the current study a stronger
fear reaction after the second exposure to the aversive context in
the LR rats could be due to a decrease in the GABAergic activity
(represented by a decrease GAD67 expression) in the amygdala,
leading to the disinhibition of amygdala-related processes and
enhancement of the fear reaction. This hypothesis is substantiated
by our earlier findings that fear re-conditioning induces an increase
in the freezing duration that is accompanied by an increase in
amygdala activity (measured by c-Fos and CRF expression) and
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Fig. 6. Photomicrographs showing representative
expression of GAD67 in the central nucleus of the
amygdala. Slices were photographed with an
objective lens at 20 × magnification (total
magnification ×200). Scale bar indicates 75 µm. The
arrow heads show representative immunopositive
cells. HRRe-CFC– high-anxiety animals pretreated with
vehicle solution, and conditioned for a second time to
the aversive context (n = 8); HRAnt10 – high-anxiety
rats administered with antalarmin at a dose of 10
mg/kg, and conditioned for a second time to the
aversive context (n = 8); LRRe-CFC – low anxiety
animals pretreated with vehicle solution, and
conditioned for a second time to the aversive context
(n = 9); LRAnt10 – low-anxiety rats administered with
antalarmin at a dose of 10 mg/kg, and conditioned for
a second time to the aversive context (n = 7).



weaker prefrontal cortex activity (measured by CRF expression) in
both the HR and LR groups. However, these effects were
significantly stronger in the LR group (35).

The effect of antalarmin on the fear response and GABAergic
system activity in the amygdala of the high- and low-anxiety rats

The CRFplays an importantrole in modulatingthe activity of
the brain structuresinvolved in fear learning and fear expression.
Exposureto footshock increases CRF expression in the amygdala

of male rats (48). This increase may be critical for fear conditioning
because reducing the effects of CRF in both the BLA(BA and LA)
and the CeAdisrupts the consolidation or stabilization of fear
memories in male rats (12, 14). Compelling evidence indicates that
CRF activation of the CRF1 receptor is sufficient and in many cases
necessary to initiate an anxiety-like response (7-9). The anxiogenic
character of the CRF1 receptor ligands was verified by the
consistent anxiolytic effects of peptide or non-peptide CRF1

receptor antagonists (49). For example, pharmacological blockade
at the CRF1 receptor by the nonpeptide corticotropin-releasing
factor antagonist antalarmin produced anxiolytic-like effects in
animal models of anxiety, including a blockade of the anxiogenic-
like effects of CRF in the elevated plus maze test (10 and 20
mg/kg), impaired induction and expression of conditioned fear (20
mg/kg), and reduced burying behavior in rats (10 and 20 mg/kg)
(11, 41, 50, 51). In agreement with these findings, in the present
study the pretreatment of rats with antalarmin (10 mg/kg and 20
mg/kg) prior to the second exposure to the aversive context
inhibited the conditioned fear response in the HR group. We did not
observe any significant inhibitory effects of antalarmin in the LR
rats. Similar results were presented by Keck et al. (52). In this
report, the anxiolytic-like effects of a different non-peptide CRF1

receptor antagonist (R121919) were found to depend on the level
of innate emotionality in the rats. The authors found that R121919
displayed anxiolytic effects in the elevated plus maze only in rats
selectively bred for high anxiety-like behavior (HAB rats) and had
no anxiolytic effects in rats selectively bred for low anxiety-like
behavior (LAB). Similarly, Rotzinger et al. (49) suggested that the
effects of a CRF1 receptor antagonist in animal models of anxiety
were dependent upon the baseline anxiety state of the animal and
the test parameters (49, 52).

In the present study, the behavioral effect of a lower dose of
antalarmin was accompanied by increased GAD67 expression in
the PLand CeAand increased the GABAconcentration in the
amygdala in the HR rats. The PL, which is a subregion of the
medial prefrontal cortex, seems to be critical for the expression of
fear-related behavior (18, 53-54). PLactivity increases during and
following fear conditioning (17, 55). Additionally, PL has a
reciprocal connection with the amygdala, especially with the BA.
Subsequently, augmented BAactivity mediated through the PLis
a necessary condition to activate CeAoutput neurons, which
results in fear responses (53-54). Thus, the antalarmin treatment-
related increase in GAD67 activity in the PLof HR rats via the
enhancement of local GABAsynthesis might diminish the activity
of this important neuronal loop for the expression of fear.

Pretreatment of the HR rats with antalarmin enhanced
GABAergic neurotransmission (shown by the increased GAD67
expression) in the CeA. Similar results were observed in our
previous study, where the non-selective CRF receptor antagonist
α-helical CRF(9-41) significantly decreased the rat freezing
responses and increased the GABAconcentration in the CeA
during the first 30 min of observation (microdialysis) (56). The
CeA is largely GABAergic, receives glutamatergic projections
from the LAand expresses a wide variety of neuropeptides (CRF,
vasopressin, neuropeptide Y, and oxytocin). The role of all these
peptides in regulating of anxiety-related behavior has been
suggested (2, 57-58). We can not exclude that antalarmin could
disinhibit the activity of other neuropeptide systems found in the
CeA by blocking the action of CRF, thereby contributing to the
anxiolytic effect. For example, Huber et al. (58) demonstrated that
oxytocin, which is a neuropeptide with a strong anxiolytic
potency, excited a subpopulation of GABAergic neurons in the
CeA. When activated by oxytocin, these neurons exerted tonic
inhibition by reducing the excitability of CeAneurons (2, 58).

Some data from the literature indicate that CRF has a
stimulating effect on GABAergic activity in the amygdala (10, 59).
However, these data are limited and significantly differ
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Fig. 7. GABA concentration in the cortex (A) and the amygdala
(B) 180 min after antalarmin administration and 90 min after
exposure to the conditioning boxes. The data are shown as the
means + S.E.M. HRRe-CFC– high-anxiety animals pretreated with
vehicle solution, and conditioned for a second time to the
aversive context, n = 8 (A-B); HRAnt10 – high-anxiety rats
administered with antalarmin at a dose of 10 mg/kg, and
conditioned for a second time to the aversive context, n = 7 (A),
n = 8 (B); HRAnt20 – high-anxiety rats administered with
antalarmin at a dose of 20 mg/kg, and conditioned for a second
time to the aversive context, n = 7 (A-B); LRRe-CFC– low anxiety
animals pretreated with vehicle solution, and conditioned for a
second time to the aversive context, n = 7 (A), n = 8 (B); LRAnt10

– low-anxiety rats administered with antalarmin at a dose of 10
mg/kg, and conditioned for a second time to the aversive context,
n = 7 (A-B); LRAnt20 – low-anxiety rats administered with
antalarmin at a dose of 20 mg/kg, and conditioned for a second
time to the aversive context, n = 7 (A-B). **P< 0.01, differs from
HRRe-CFC. For more details, see the experimental procedure.



methodologically from our study. For example, Nie et al. (10)
based their conclusions solely on the analysis of
electrophysiological changes in IPSC (inhibitory postsynaptic
current) amplitudes in CRF1 and CRF2 receptor knock-out mice.
Roberto et al. (59) analyzed the effect of a different CRF1
antagonist (R121919) on the ethanol-induced release of GABAin
the CeAin vivo. However, these authors did not observe any effect
of this CRF1 receptor antagonist on the basal release of GABA. The
mechanisms underlying the effect of CRF antagonists on the
GABA system require further analysis. The possibility that this
effect is indirect and secondary to the influence of the CRF1

receptor antagonist on the equilibrium between the other
neurotransmitter systems present in the prefrontal cortex and
amygdala also cannot be excluded. As mentioned earlier, CRF is
expressed in GAD-positive interneurons in the cerebral cortex (20-
21). Another point is that fear conditioned context may stimulate
corticosterone secretion, which has actions in the amygdala not
only inhibiting GABA release, but also facilitating glutamate
release (32, 60-62). The effects of CRF1 antagonist could be linked
to these activities, as shown by a number of other publications (51,
63-65), however, more accurate discussion of this topic is beyond
the scope of our work.

The effects of a lower dose (10 mg/kg) of antalarmin were
more potent than the effects of the higher dose (20 mg/kg) of the
antagonist. Accordingly, Heinrichs et al. (66) found that only the
lowest dose (1 µg, i.c.v.) of α-helical CRF9-41 tested was effective
at blocking the stress-induced decrease in exploration on the
elevated plus maze test, whereas higher doses (5 and 25 µg) were
ineffective (49, 66). Although there are some important
differences between the experimental protocols of Heinrichs et al.
(66) report and our study (e.g., administration of a different CRF1
receptor antagonist and a different type of aversive stimulation),
these results indicate a non-linear dose response curve of the CRF
receptor antagonists effects. It is widely accepted in the
pharmacological sciences that a lower dose of a drug is more
selective than a higher dose. Therefore, the higher doses of
antalarmin could activate other receptors (e.g., alpha-2 and beta-2
adrenergic, kappa opioid, cholecystokinin B, and D2 receptor) and
impair the selectivity of the drug action through these interactions
(67-71).

It is noteworthy, that the CRF1 receptors are expressed in
numerous extrahypothalamic brain regions including the ventral
tegmental area (VTA) a structure that appears important for
aversive learning (72-73). The recent study showed that intra-
VTA injection of a lentivirus against CRF1 mRNA did not affect
tone-elicited freezing during conditioning but increased freezing
duration to the tone even after extinction and reinstatement (72).
This study demonstrated that CRF1 receptors located in the VTA
also play an important role in the conditioned fear. Another
structures of the brain, which could contribute to the effects of
CRF antagonist, may involve the central serotonin system (74),
as well as CRF receptors within the periaqueductal gray matter,
regulating pain responses (75).

In summary, this study shows that the LR rats appear to be
more sensitive to the second exposure to contextual fear stimuli.
This phenomenon was accompanied by increased neuronal
activity in the amygdala. Furthermore, this study demonstrates
that HR rats are more sensitive to the anxiolytic effects of acute
antalarmin administration, which are accompanied by changes
in CRF-GABA system activity. In this group of animals,
antalarmin administration enhanced GABAsynthesis and the
GABA concentration in the medial prefrontal cortex and
amygdala. These results indicate that the fear responses in the
HR rats may be regulated by innate and individually variable
changes in the activity of the local CRF and GABAergic
systems. The current data may help increase our understanding
of the neurobiological mechanism controlling the CRF-GABA

interaction within the prefrontal cortex-amygdala circuitry,
which is responsible for individual differences in reactivity to
stressors. This knowledge can be applied to elucidate the
pathophysiology of the predisposition to anxiety and
trauma/stress-related disorders.
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