INTRODUCTION

Ulcerative colitis, a chronic and recurrent inflammatory bowel disease (IBD), is characterized by inflammatory cells infiltrate such as neutrophils, macrophages, and eosinophils. These inflammatory cells are able to produce robust amounts of reactive oxygen and nitrogen species when stimulated. Therefore, considering these pathogenesis even under unknown etiology, the role of inflammatory response and robust oxidative stress was intervened extensively in IBD pathogenesis (1, 2). Therefore, a variety of therapeutic agents, including sulfasalazine, mesalazine, prednisolone, and cyclosporin have been used clinically to suppress ‘inflammation prone to develop ulcer’ in IBD. 5-ASA is a main treatment for mild to moderate patients and steroids as treatment for moderate to severe degree. Sulfasalazine and mesalazine were proved to have some antioxidant actions. However, though prescribed actively, still long-term medication to prevent relapse is eagerly to be improved owing to the chronic nature of IBD, occasional flares of clinical course, and fear of colitis-associated cancer especially in patients with chronic and relapsing clinical course, so called maintenance therapy (3, 4).

Despite advancement in molecular targeted therapies and the development of biologics such as infliximab and adalimumab, there are still long-ways to achieve long-term anti-inflammatory therapy and complete healing (or cure) (5), and the patients with IBD are concerned about serious potential adverse effects of therapeutic agents. Among those with IBD, it is estimated that approximately 44% to 56% patients use some form of complementary or alternative therapy (6). For these reasons, products of natural origin that can cover the gap between...
A

Group 1 (normal) - Sham gavage for 1 week

Group 2 (DSS colitis) - Sham gavage followed by 3% DSS

Group 3 (10 mg/kg Oligonol treat) - Sham gavage followed by Oligonol (10 mg/kg) and 3% DSS

Group 4 (50 mg/kg Oligonol treat) - Sham gavage followed by Oligonol (50 mg/kg) and 3% DSS

Group 5 (100 mg/kg Oligonol treat) - Sham gavage followed by Oligonol (100 mg/kg) and 3% DSS

Animal: 7 week-old C57BL/6 mice (n=10),
* 3% DSS in drinking water for 7 days
** Oligonol as oral gavage, 10, 50, and 100 mg/kg for 3 weeks

B

Graph showing colon length (cm) for different groups:

Group 1 (normal) vs. Groups 2-5 (DSS colitis)

C

Graph showing body weight (% of normal) over 7 days for different groups:

Group 1 (normal) vs. Groups 2-5 (DSS colitis)

D

Graph showing average score of clinical signs (Hematoxylin & Eosin) for different groups:

Group 1 (normal) vs. Groups 2-5 (DSS colitis)

E

Histological images for different groups:

Group 1 (normal) vs. Groups 2-5 (DSS colitis)
pharmaceuticals and the effects with strong arm of safety have become an alternative option in addition to the conventional therapies that are used to treat IBD (7).

Oligonol, a low-molecular-weight polyphenols derived from lychee fruit, had been reported to inhibit TPA-induced COX-2 expression and inflammatory cytokine production by blocking the activation of nuclear factor kappa B (NF-κB) and C/EBP via modulation of MAP kinases, by which suppressed streptozotocin-induced diabetic rats (8), chemically induced mouse skin tumorigenesis (9), and IBD (10). Since oligonol are quickly absorbed and effective for protecting the cells from oxidative stress, treatment with oligonol exerted higher antioxidant activity than even epigallocatechin-3-gallate or catechin monomer from green tea (11). In this background, under the hypothesis that oligonol co-administration in patients with maintenance therapy might be right strategy to prevent relapse, we conducted two kinds of well-known dextran sulfate sodium (DSS)-induced colitis model, one was to document preventive effects of oligonol administration against DSS-induced colitis and the other was to document preventive effects of oligonol against repeated DSS-induced relapsing colitis. As results, anti-inflammatory, antioxidative, and host defense enhancing actions of oligonol significantly afforded either preventive action of colitis or decreasing relapse of ulcerative colitis.

MATERIALS AND METHODS

Reagents

The following materials were obtained from commercial sources: all chemical reagents from Sigma (St. Louis, MO). Oligonol (> 95% purity) was obtained from Amino Up Chemical Co., Ltd. (Sapporo, Hokkaido, Japan). Oligonol is produced by an oligomerization process that converts high-molecular weight polymeric proanthocyanidins into low-molecular weight oligomeric proanthocyanidins including monomers, dimers and trimmers, of which process is achieved by mixing proanthocyanidin polymers with tea catechins (12). Antibodies for Western blotting were purchased as follows: β-actin, p65, lamin B, HO-1 from Santa Cruz Biotechnology, (Santa Cruz, CA), iNOS from BD Biosciences (San Jose, CA), COX-2 from Thermo Scientific (Seoul, Korea), NQO-1 from Abcam (Cambridge, MA). Horseradish peroxidase-conjugated anti-rat/rabbit/mouse IgG was purchased from Thermo Scientific Pierce (Rockford, IL).

Animals

Animals were handled in an accredited animal facility in accordance with Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International) guidelines under the facility named CACU (The Center of Animal Care and Use) of CHA University Laboratory Animal Research Center after IRB approval. Two experimental protocols were followed and conducted separately (Fig. 1A and Fig. 5A).

Prevention of colitis model, pre-treatment with oligonol and induction of dextran sodium sulfate-induced colitis (Fig. 1A)

Germ-free male C57BL/6 mice (5 weeks of age, Orient Bio, Seongnam, Korea) were used for the experiments. A total of 50 mice were divided into 5 groups, 10 mice per each group, respectively; a non-colitic group that received no drug treatment and distilled water without DSS (control, Group I); a colitic control group that received 3% DSS (molecular weight ¼ 36,000 – 50,000; MP Biomedicals) in tap water ingestion for 1 week alone (Group II); the other 2 pretreated groups with oligonol ((50 mg/kg), Group III) or sulfasalazine ((30 mg/kg), Group IV) for 2 week daily, and then 3% DSS in tap water ingestion for 1 week (Fig. 4A). Powders of oligonol were dissolved in PBS and mice of the normal group and the DSS group were ingested with PBS as a negative control. Clinical phenotypes such as hematochezia, rectal prolapse, diarrhea, abdominal pain, and body weight were investigated and charted daily. After 28 days after the first DSS administration, all mice were killed and colons were removed, opened longitudinally, and rinsed with PBS. The lengths of colon were measured, and isolated tissues were subjected to a histologic examination and extraction of protein.

Assessment of colonic damage

Animal body weight, the presence of gross blood in the feces, and stool consistency as well as amounts of consumed DSS-mixed water was recorded daily for each rat by an observer unaware of the treatment. None of the mice were died in all the groups. After 7 days of DSS ingestion. Once mice were sacrificed, their colons were immediately removed and rinsed

Fig. 1. Oligonol attenuated DSS-induced colitis. (A) Experimental design to evaluate therapeutic effects of oligonol on DSS-associated colitis. The experimental details are described in Materials and Methods. (B) The average of colon length and gross appearances of the representative case of groups. Average of colon length was measured. (C) The changes of body weight. Significant reductions in body weights were seen after 3% DSS administration irrespective of group (P < 0.05), but significant ameliorations in body weight reductions were noted in 100 mg/kg oligonol treatment (P < 0.05). (D) Mean scores of clinical signs including hematochezia, diarrhea, and abdominal pain. Administration of DSS provoked significant levels of colitis as reflected with gross findings that the body weight of mice and length of colon were significantly decreased accompanied with significantly increased anal bleedings or diarrhea. However, all dose of pretreatment with oligonol leads to restore in the length of colon as well as anal bleedings or diarrhea compare to DSS administration. (E) Microscopic feature of colitis and total pathologic score. Microscopically, 3% DSS administration for 1 week provoked definite colitis such as distorted glandular formation and recruited inflammatory cells especially in submucosal layer, leading to mucosal destruction. Pathologic lesion index including area affected by inflammation, extent of follicle aggregates, edema, erosion/ulceration, crypt loss and infiltration of monomorphonuclear and polymorphonuclear cells was scored. Total pathology score was all increased in DSS administration group whereas pretreatment of oligonol in all doses significantly attenuated these pathologic indices. 40 × magnification and Bar represents mean ± SD.
with ice-cold phosphate-buffered saline. The excised colonic segments were placed on an ice-cold plate, cleaned of fat and mesentery, and blotted on filter paper. Each specimen was weighed and its length measured under a constant load (2 g). The colon was longitudinally opened, and a cross section from the distal diseased area was immediately fixed in 3.7% formaldehyde and embedded in paraffin for histological analysis. Afterward, it was sectioned into different longitudinal fragments to be used for biochemical determination and Western blotting.

Histopathological examinations

The paraffin sections were stained with hematoxylin and eosin (H&E) or saved for immunohistochemical staining. Pathologic index was graded according to criteria (13). Pathologic data and slides were blindly reviewed by two independent gastrointestinal specialists (Kim KJ and Hahm KB appeared as author). For periodic acid and Schiff’s (PAS) staining, histochemical staining of glycoconjugates was carried out as per the method of Pandurangan (14), using 2% PAS reagent in dark for 20 min.

Immunohistochemistry

Immunohistochemistry was performed on replicate sections of mouse colon tissues. Sections fixed in 10% buffered formalin and embedded in paraffin were deparaffinized, rehydrated, and boiled three times in 100 mM Tris-buffered saline (pH 7.6) with 5% urea in an 850 W microwave oven for 5 min each. Sections were also incubated with F4/80 and COX-2 antibody in the presence of 1.0% bovine serum albumin and finally incubated for 16 h at 4ºC. The sections were counterstained with hematoxylin.

Western blot analysis

The colon tissues were homogenized with ice-cold cell lysis buffer (Cell Signaling Technology, Danvers, MA) containing 1 mM phenylmethylsulfonyl fluoride (PMSF). After 20 min of incubation, samples were centrifuged at 12,000 g for 15 min. Supernatants were then collected. Total protein-equivalents for each sample were separated by SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membranes, which were incubated with which were incubated with appropriate antibodiesand then visualized using West-zol Plus (Intron Biotechnol, Seongnam, Korea).

Total malondialdehyde (MDA) assay

MDA-586 kit was purchased from Oxis International (Foster city, CA) and used according to the manufacturer’s instructions.

Fig. 2. Oligonol attenuated DSS-induced colitis through decreasing proinflammatory cytokine (A) IL-1β, (B) IL-6, (C) TNF-α, serum level of IL-1β, IL-6 and TNF-α were all significantly increased after DSS administration, but all dose of oligonol were significantly attenuated them (P < 0.05). (D) The protein expression of iNOS and COX-2 according to group. The protein expression of proinflammatory signaling pathway were detected by Western blot. Administration of DSS significantly increased the expressions of COX-2 and iNOS compared with normal group but significantly decreased in all dose of pretreatment of oligonol.
To measure total level of malondialdehyde (MDA), isolated tissues were incubated with PBS (pH 2.0) for 80 min at 60ºC before carrying out this assay.

Total antioxidation capacity (TAC) measurement

Total antioxidant measurement of serum was done using the total antioxidant status assay kit (Calbiochem, San Diego, CA). The principal of the assay is dependent on antioxidants in the sample inhibiting the oxidation of ABTS™ (2,2’-Azino-di-[3-ethylbenz-thiazoline sulphonate]) substrate to ABTS™• + product by metmyoglobin (a peroxidase). The amount of ABTS™• + product can be monitored by reading the absorbance at 600 nm. Under the reaction conditions used, the antioxidants in the sample cause suppression of the absorbance at 600 nm to a degree that is proportional to their concentration.

Measurement of serum levels of IL-1β, IL-6, and TNF-α and transcriptional activity of c-Jun, c-Fos and Nrf2

After sacrifice of the mice, blood and protein were collected for ELISA assay. IL-1β, IL-6 and TNF-α (R&D Systems, Minneapolis, MN) were measured using ELISA kits according to manufacturer’s instruction. All samples were measured for their individual levels, and each sample was analyzed in triplicate manner, taking the mean of the three determinations. The level of c-Jun, c-Fos and Nrf2 were measured using transcriptional activity kits (R&D, Systems) according to manufacturer’s instruction. All samples were measured for their individual levels, and each sample was analyzed in triplicate manner, taking the mean of the three determinations.

Statistical analysis

The data are presented as means ± standard deviations (SD). The data were analyzed by ONE-WAY ANOVA followed by Dunnet. Some statistical significance between two groups was determined by Student’s t-test. Statistical significance was accepted when P < 0.05. The survival curves between the groups were compared using log-rank test.

RESULTS

Oligonol pretreatment significantly attenuated DSS-induced colitis

The administration of 3% DSS in drinking water for 7 days resulted in significant degree of colitis manifested with a significant reduction colon length (P < 0.001, Fig. 1B) and mean body weight (P < 0.05, Fig. 1C). However, in the groups pretreated with oligonol, there was significant reduction in either...
together, colon length or body weight (P < 0.01). Calculating clinical scores, as seen in Fig. 1D, the mean scores of anal bleedings or diarrhea were significantly decreased in group pretreated with oligonol in a dose-dependent manner (Fig. 1D, P < 0.05). On individual evaluation of inflammatory cell infiltrates, mucosal ulcers, and submucosal edema, as seen in Fig. 1E, there was significant decrease in pathological score in group pretreated with oligonol administration (P < 0.05).

Oligonol pretreatment significantly decreased inflammatory mediators such as IL-1β, IL-6, COX-2, iNOS, and TNF-α.

To determine whether the anti-inflammatory activity of oligonol against DSS-induced colitis is executed through inhibiting inflammatory mediators, the serum levels of IL-1β (Fig. 2A), IL-6 (Fig. 2B) and TNF-α (Fig. 2C) were measured, respectively. As shown in Fig. 2A, 2B, and 2C, IL-1β, IL-6, and TNF-α in sera were significantly higher after DSS administration (P < 0.01), but oligonol pretreatment before DSS administration resulted in a significant decrease in the concentration of serum IL-1β, IL-6, and TNF-α (P < 0.05). DSS administration led to significant increases in the expressions of iNOS and COX-2 (P < 0.05), but oligonol pretreatment led to significant decreases in

Fig. 4. Oligonol activated the antioxidant activity and Nrf2-mediated antioxidant signaling pathway. (A) Total antioxidant concentration (TAC). The induction of the total antioxidant activity was significantly decreased by administration of DSS whereas the total antioxidant activity significantly increased by pretreatment of oligonol. (B) MDA levels. Colon MDA levels were significantly increased after DSS administration compared with the normal group, but the colon MDA levels were significantly lower in all dose of oligonol compared with DSS administration. (C) Nrf2 transcription activity. Nrf2 transcription activity levels were significantly lower in DSS administration in mice than in normal controls, whereas pretreatment of oligonol showed markedly increased Nrf2 transcription activity levels compared to DSS administration. (D) Protein expression of HO-1 and NQO-1. All protein expression of HO-1 and NQO1 are the phase II enzymes downstream of Nrf2 were examined. The protein expression of HO-1 in oligonol pretreatment was significantly increased compared to DSS administration.

Fig. 5. Oligonol prevented repeated DSS administration-induced relapse of colitis. (A) Experimental design for evaluating the protective effects of oligonol on relapse of DSS-associated colitis. The experimental details are described in Materials and Methods. (B) Survival of mice. Mice were examined for survival every day, up to 7 days after the DSS re-administration. (C) The changes of colon length and; (D) Body weight; (E) Microscopic feature of colitis and total pathologic score. Microscopically, 3% DSS administration for 4 week provoked definite colitis such as distorted glandular formation and recruited inflammatory cells especially in submucosal layer, leading to mucosal destruction. Pathologic lesion index included scores of inflammation, extent of follicle aggregates, edema, erosion/ulceration, crypt loss, and infiltration of monomorphonuclear and polymorphonuclear cells. Total pathology score was all increased in DSS administration group whereas treatment of oligonol in all dose significantly attenuated these pathologic indices. Bar represents mean ± SD.
A

Group I
3% DSS
Sham gavage
killed

Group II
3% DSS
Sham gavage
3% DSS*

Group III
3% DSS
Oligonol** (50 mg/kg)
3% DSS

Group IV
3% DSS
Sulfasalazine*** (30 mg/kg)
3% DSS

1 2 3 4 (weeks)

Animal: 7 week-old C57BL/6 mice (n=10), * 3% DSS in drinking water for 7 days
** oligonol as oral gavage
*** Sulfasalazine (30 mg/kg)

B

Mean colon length (cm)

Group I II III IV

P < 0.01 P < 0.01 P < 0.01

Mean score of clinical signs

Group I II III IV

P < 0.01 P < 0.01 P < 0.01

C

Body weight (g)

G I G II G III G IV

P < 0.01

D

Group I Group II

Group III Group IV

E

Total pathologic score

Group I II III IV

P < 0.01 P < 0.01 P < 0.01

Survival rate (%)

After relapse of DSS-induced UC (days)
either iNOS or COX-2 expression ($P < 0.05$, Fig. 2D). Next, we have compared the mean nuclear expression of NF-κB p65 according to group and the expressions of NF-κB were significantly inhibited in group pretreated with oligonol ($P < 0.05$, Fig. 3A). Looking at other transcription factor implicated in acute inflammation, as seen in Fig. 3B, c-Jun and c-Fos was significantly increased with DSS administration, but their expressions were significantly decreased in group pretreated with oligonol ($P < 0.05$). All of these results consistently showed oligonol pretreatment significantly repressed inflammation-associated transcriptional activations, NF-κB and AP-1.

Significant antioxidative and phase 2 antioxidant enzyme response was responsible for preventive action of oligonol

To compare the difference in antioxidant condition between groups, the mean levels of total antioxidant concentration (TAC) was measured. As seen in Fig. 4A, DSS administration led to significant reduction in TAC ($P < 0.01$) significantly. However, oligonol pretreatment preserved significant levels of TAC compared with Group 2 ($P < 0.01$). These decreases in TAC in DSS administration were significantly associated with significant increments in lipid peroxidation. The mean levels of malondialdehyde (MDA), reflecting the extent of oxygen derived free radical induced-lipid peroxidation, were significantly increased in Group 2 ($P < 0.001$), but significantly decreased in oligonol pretreated group ($P < 0.005$, Fig. 4B). To demonstrate whether these ameliorating efficacies of oligonol on DSS-induced colitis are mediated by antioxidative phase 2 enzyme reaction, we measured not only Nrf2 transcription activity, but also the expression of Nrf2 downstream enzymes, HO-1 and NQO-1, in the colon tissues. As shown in Fig. 4C, Nrf2 transcription activity levels were significantly lowered after DSS administration compared to that before administration ($P < 0.01$). However, oligonol pretreatment significantly preserved Nrf2 activity even after DSS administration compared to that before administration ($P < 0.01$). However, oligonol pretreatment significantly preserved Nrf2 activity even after DSS administration ($P < 0.01$, Fig. 4C). The expression of HO-1 among the phase 2 antioxidative and anti-mutagenic enzymes down-stream of Nrf2 was increasingly observed in group pretreated with oligonol ($P < 0.05$, Fig. 4D). However, NQO-1 was not influenced by oligonol pretreatment.

Oligonol prevented relapse of colitis better than sulfasalazine

In order to represent relapse model of IBD, we have designed model as shown in Fig. 5A that DSS was re-administered after two weeks pause of the first DSS administration. Our model of colitis relapse was significantly led to mortality of mice as seen in Fig. 5E, leading to aggravated colitis through relapse. Evaluating colon length, clinical signs, body weight, and pathological assessment, repeated bout of 3% DSS after 2 weeks pause led to significant

Fig. 6. (A) F4/80 macrophage infiltrations. Macrophage infiltrations were measured with F4/80 immunostaining. (B) TNF-α levels, serum level of TNF-α were all significantly increased after DSS administration, but oligonol were significantly attenuated them. (C) COX-2 immunohistochemical staining and its expression, Immunohistochemical detection of COX-2 in mouse colon according to group. (D) The protein expression of COX-2. The protein expression of proinflammatory signaling pathway was detected by Western blot. Administration of DSS significantly increased the expressions of COX-2 compared with normal group but significantly decreased in pretreatment of oligonol.
shortening in colon length \(P < 0.01, \) Fig. 5B, significant increases in clinical signs \(P < 0.01, \) Fig. 5B, significant decreases in mean body weight \(P < 0.01, \) Fig. 5C, and significant increases in pathological scores \(P < 0.01, \) Fig. 5D. However, oligonol treatment for 2 weeks before repeated DSS administration led to significantly increases in colon length \(P < 0.01, \) significantly ameliorated clinical signs \(P < 0.01, \) Fig. 5B, increment in mean body weights \(P < 0.001, \) Fig. 5C, and significant reduction in mean pathological score \(P < 0.01 \) (Fig. 5D). On pathological evaluation, repeated administration of 3\% DSS led to significant increases in colitis and ulcerations, but these pathological changes were significantly ameliorated (Fig. 5D). As shown in Fig. 5E, relapse model of DSS-induced colitis was associated with significant mortality as time passes in control, but these increased mortality via repeated DSS administration were significantly prevented in Group III and Group IV, signifying the importance of maintenance therapy in ulcerative colitis \(P < 0.01 \).

Anti-inflammatory actions of oligonol contributed to decreased relapse of colitis

In order to explain why oligonol treatment significantly decreased relapse of repeated DSS administration, first, counting macrophage infiltrations, F4/80 staining for macrophages was done in all groups and as seen in Fig. 6A, repeated DSS administration (Group II) led to significantly increased expressions of F4/80 \(P < 0.001 \). However, either oligonol or sulfasalazine treatment for 2 weeks before repeated DSS administration significantly decreased macrophage infiltration \(P < 0.01 \). Mucosal levels of COX-2 (Fig. 6A) and TNF-\(\alpha \) (Fig. 6B) were also significantly increased with second DSS administration, but significantly decreased only in oligonol treatment, not with sulfasalazine \(P < 0.05 \).

NQO-1 induction as significant phase 2 antioxidative host response with oligonol treatment led to prevention of colitis relapse

Different with HO-1 and NQO-1 expressions as seen in acute colitis, repeated induction of colitis through repeated DSS administration led to significant decrements in NQO-1, while HO-1 significantly increased \(P < 0.05, \) Fig. 7A. Focusing on NQO-1, repeated bout of DSS colitis led to significant decreases in NQO-1, while oligonol treatment significantly increased NQO-1 expressions \(P < 0.05, \) Fig. 7A. Lastly, as biological response implicated in relapse prevention, we have measured the
distribution of PAS-positive mucosal cells according to group. As seen in Fig. 7B, significantly decrements in PAS positive cells were noted with repeated DSS administration, but oligonol treatment significantly preserved PAS (+) cells in colon mucosa (P < 0.01).

DISCUSSION

Translating our study from point of clinical aspect, oligonol treatment can be applied to prevent IBD relapse, better than current standard maintenance therapeutics to...
prevent relapse, sulfasalazine. Currently, gold standard for maintenance therapy is *sine qua non* 5-ASA compounds such as sulfasalazine or mesalazine, but after careful translation of our study, oligonol alone or combination with 5-ASA affords faithful gate-keeper for IBD maintenance therapy. Oligonol pretreatment significantly either ameliorated DSS-induced colitis or mitigated relapse through repeated DSS-induced colitis. As summarized in Fig. 8, oligonol treatment significantly induced phase 2 antioxidative response in DSS-induced colitis in addition to inactivation of redox-sensitive NF-κB and other inflammatory signaling.

Among many experimental models for inducing colitis, the DSS induced colitis remains one of the best surrogate models that closely resembles the human ulcerative colitis in many facets (15-16), of course, easy to handle. DSS exhibits toxic effects toward colonic epithelium and destroys the mucosal barrier, allowing bacteria to contact lamina propria cells (17). The uncontrolled intestinal immune response against bacterial antigens leads to the production of abundant cytokines and chemokines by activated leukocytes and epithelial cells accompanied with excess oxidative stress in IBD and colitis-associated cancer (18). Excess generation of ROS caused by the gut microenvironment breaks intestinal antioxidant systems, thereby contributing to intestinal oxidative injury and initiating pro-inflammatory signaling such as COX-2, iNOS as well as diverse cytokines. In addition, inhibition of an antioxidant enzyme like HO-1 further aggravated DSS-induced colitis.

At first, we utilized the role of preventive action of oligonol in DSS-induced colitis model that mimics human IBD. Our study clearly demonstrated that oligonol administration was able to inhibit TNF-α and COX-2 both at protein and mRNA levels, suggesting that oligonol could be useful in the suppression of colon inflammation. On the other hand, TNF-α has been described as a key molecule in UC pathogenesis, and a monoclonal antibody against this molecule, biologics such as infliximab or adalimumab, has proven to be effective in the treatment of moderate to severe UC. Our study demonstrated that there was a significant amelioration of the colon length after 2 weeks of oligonol treatment and a significant reduction in mean scores of clinical symptoms as well as survival. To investigate a mechanism of preventive action of oligonol against colitis, we investigated whether oligonol can provide potency of remission maintenance in experimental models of both acute colitis and cyclic colitis representing relapse model. As results, we found potent effects of oligonol on the survival of the mice given 3% DSS in a cyclic protocol for up to 28 days (Fig. 5A). In the absence of oligonol, a protocol characteristically leads to almost two-thirds over a period of 7 days. We found that treatment with oligonol nearly eliminated deaths during this period in relation to the dose given (Fig. 5B).

Another important role of oligonol in this study was the regenerating and rejuvenating action as documented with PAS staining and phase 2 host defense enzyme expression in affected colon tissues. That means oligonol may have potential to heal the mucosa. Currently, remission is defined as complete resolution of symptoms and endoscopic mucosal healing (19). In the cyclic protocol, DSS (3%) was given for repeated 7-day periods interrupted by recovery periods on water, oligonol or sulfasalazine. Oligonol or sulfasalazine was given for 2 weeks, and the disease activity was evaluated at the end of the second DSS-cycle. In these models, we compared the efficacy of oligonol (50 mg/kg) with that of sulfasalazine with the dose of 30 mg/kg. In human ulcerative colitis with mild to moderate activity, the standard therapy is sulfasalazine, given as oral therapy in doses of 2 g (30 mg/kg for an average 60 kg weighted person) a day for maintenance of remission. Though sulfasalazine, a drug composed of 5-ASA and sulfapyridine linked by an azo bond (20), can relieve inflammatory activities as well as some radical scavenging action, in spite that sulfasalazine has a double edged sword effect by several side effects, such as generating oxidative stress, hepatotoxicity, and severe blood disorders (21). From the current study, we found that oligonol was significantly better than sulfasalazine in preventing UC relapse and achieving mucosal healing, which was possible through innate anti-inflammatory actions as well as Nrf2-mediated cytoprotection.

Nrf2 plays a central role in cytoprotection by detoxifying and eliminating reactive oxygen species (ROS), xenobiotics and electrophilic carcinogens (22). Nrf2 also mediates induction of several other classes of antioxidant proteins such as thioredoxin in peroxiredoxin, sulfiredoxin, ferritin, metallothionein, and HO-1 and mediates the induction of phase II drug-metabolizing enzymes such asaldo-ketoreductases (AKRs), glutathione S-transferases (GSTs), and NAD(P)H: quinoneoxidoreductase 1 (NQO1). In this study, we demonstrated that oligonol increased Nrf2 transcription activity and its downstream such as HO-1 and NQO1 accompanied with significantly decreased of nuclear translocation of NF-κB p65. During an acute phase response following inflammatory stimuli, AP-1 is a regulator of major physiological processes such as cell proliferation, differentiation, organogenesis, apoptosis, and response to stress. c-Fos and c-Jun are the best-studied AP-1 components (23).

Recent data also reveal that Nrf2 signaling plays an important role in reducing the inflammatory response. Nrf2 also represses multiple pro-inflammatory genes, including TNF-α, IL-1 and IL-6, which is thought to be primarily through its ability to antagonize redox sensitive transcription factor, NF-κB (24, 25). The HO-1 enzyme has prominent anti-inflammatory activity and it is up-regulated by Nrf2. This is likely to modulate innate immunity, inflammation. There is also considerable crosstalk between the Nrf2 pathway and inflammatory signaling. NF-κB has been reported to directly repress Nrf2 signaling at the transcriptional level (26). Despite of advancement of IBD treatment, many IBD patients also remain reluctant to the currently established medications largely due to potential adverse events. From the results of this study, oligonol may constitute a new pharmacologic treatment in IBD because it is able to attenuate the inflammation in acute and cyclic colitis model, probably because of its ability to re-enforce adaptive responses as well as cytoprotective actions.

Conclusively, oligomerized small molecular polyphenol, oligonol, showed not only anti-inflammatory effects which are presumably secondary to its regulation of the release of some endogenous inflammatory endocoids namely, TNF-α and NO, but also the modulation of oxidant and anti-oxidant balance by increasing cytoprotective protein expression which together can prevent possible oxidative stress-induced apoptosis of colonic epithelial cells in colonic tissue. Two mechanisms possibly concerted the protective role of oligonoln DSS-induced colitis or repeated DSS-induced fatal relapsed colitis. In conclusion, our studies provide some clue that oligonol may have a potential in either suppressing colon inflammation or affording antioxidative defense system in the diseased bowel (Fig. 7c). However, a clinical trial is needed to confirm these findings in human patients with IBD.

Abbreviations: AP-1, activator of protein-1; CD, Crohn’s disease; COX-2, cyclooxygenase 2; DSS, dextran sulfate sodium; HO-1, heme oxygenase-1; IBD, inflammatory bowel
disease; IL-1, interleukin-1; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; MDA, malondialdehyde; NF-kB, nuclear factor-κ B; NQO-1, NAD(P)H dehydrogenase (quinone 1); PAS, periodic acid and schiff; TAC, total antioxidation capacity; TNF-α, tumor necrosis factor-α; UC, ulcerative colitis;

Author contributions: K.J. Kim, J.M. Park, J.S. Lee, Y.S. Kim, N. Kangwan, Y.M. Han, E.A. Kang, and J.M. An initiated the project, performed most of the experiments, and K.J. Kim and K.B. Hahm wrote the manuscript. All authors performed a significant part of experiments. Among authors, K.J. Kim, J.M. Park, and K.B. Hahm were involved in project inception, design, supervision, and manuscript writing.

K.J. Kim and J.M. Park contributed equally in the current study.

Acknowledgements: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2017R1C1B2009057 to Y.M. Han) and supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA, 116015-03-1-CG000).

We appreciate help from CHA Organoid Research Center.

Conflict of interests: None declared.

REFERENCES

Received: June 1, 2018
Accepted: June 30, 2018

Author’s address: Prof. Ki Baik Hahm, CHA Cancer Prevention Research Center, CHA Bio Complex and Digestive Disease Center, CHA University Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam, Korea.
E-mail: hahmkb@cha.ac.kr