INTRODUCTION

The family of small leucine-rich proteoglycans SLRPs, which includes decorin, lumican, biglycan and fibromodulin, constitutes an abundant component of the skin extracellular matrix (1). Lumican, as well as other SLRPs, is involved in collagen fibrillogenesis regulation in the dermis (2,3) and in the cornea (4). It regulates keratocyte migration (5, 6).

Lumican expression has been reported in many types of cancer (7) including breast carcinoma (8, 9); colorectal (10, 11) and pancreatic cancer (12). It was described in stromal melanoma tissue (13) and melanoma cells (14). Its expression in cancer is believed to be related to a tumour suppressor activity.

We previously demonstrated that lumican expression reduced the ability of B16F1 mouse melanoma cells to invade Matrigel® in vitro and to inhibit primary tumour growth by inducing melanoma cells apoptosis in syngenic mice (1). The melanoma cell migration was decreased on lumican substratum through β1 integrin (15). Moreover, lumican affects cytoskeleton organization in human melanoma A375 cells (16).

Lumican was suggested to be a major component of the ECM proteoglycans in adult human lungs. It was detected as a single component of molecular weight 65 to 90 kD (17). Immunohistochemistry showed that lumican was mainly present in vessel walls. In lung cancer tissues, it was localized in the cytoplasm of cancer cells and/or stromal tissues adjacent to cancer cells (9).

Anti-angiogenic and pro-apoptotic drugs have been developed to inhibit lung cancer progression (18). The in vivo anti-cancer effect of these drugs was associated with a decreased microvessel density as well as a reduction of tumour cell proliferation and increased tumour cell apoptosis. In avian embryo model, gene expression profiling of the angiogenic switch in experimental glioma suggested that lumican could be a potential regulator of the invasive process (19). Transcriptome analysis of endothelial cell gene expression identified lumican as a novel regulator of angiogenesis. Lumican was described to inhibit endothelial cell activation of p38 mitogen-activated protein kinase (p38 MAPK), as well as their invasion, angiogenic sprouting, and vessel formation in mice (20).

Since lumican was suggested to be a major component of the proteoglycan matrix in healthy adult human lungs (17), we investigated whether human recombinant lumican was able to decrease the number and the size of lung metastasis and to study
the mechanism of its action. Using lumican-expressing B16F1 melanoma cells injected in the tail vein of mice, we demonstrated that lumican decreased the number and the size of lung metastasis nodules by inducing tumour cell apoptosis and inhibited the release of VEGF, therefore decreasing the density of blood vessels in the lung metastasis nodules. In vitro, using human umbilical vein endothelial cells (HUVEC), we demonstrated that lumican inhibited endothelial cell tube formation and endothelial cell migration. Therefore, we suggest that lumican might be a powerful and effective anti-tumour agent against melanoma, due to its inhibition of both primary tumour growth and metastatic spreading to the lungs, associated with a pro-apoptotic and angiostatic effect.

MATERIALS AND METHODS

Reagents and antibodies

Recombinant human lumican core protein was produced as previously described (1). Type I Collagen was prepared from rat tail tendon by extraction with 0.1 M acetic acid (21). Human plasma fibronectin and propidium iodide were obtained from ABCys (Paris, France). Hoechst33258 was obtained from Invitrogen (Cergy-Pontoise, France). Doxorubicin was obtained from Pharmacia and Upjohn (St Quentin en Yvelines, France). Matrigel® (Cergy-Pontoise, France). Doxorubicin was obtained from Pharmacia and Upjohn (St Quentin en Yvelines, France). Matrigel® (ECM gel) was purchased from BD Biosciences (Bedford, MA, USA). VEGF and basic Fibroblast Growth Factor (bFGF) were purchased from Sigma-Aldrich (St Louis, MO, USA).

The following rabbit polyclonal primary antibodies were used: anti-human actin (A5060, Sigma), anti-human lumican (1); anti-human caspase-3, anti-human cleaved caspase-3 (Cell Signaling Technology, Danvers, MA, USA). Anti-human vWF antibody (a; anti-human poly (ADP-ribose) polymerase (PARP), anti-human actin (A5060, Sigma), anti-human lumican (1); anti-human caspase-3, anti-human cleaved caspase-3 (Cell Signaling Technology, Danvers, MA, USA). Anti-human vWF was provided by Millipore (Molsheim, France). Rabbit polyclonal antibody anti-mouse Cyclin D1 (SP4) was obtained from Labvision (Westinghouse, CA, USA).

The following mouse monoclonal primary antibody were used: anti-human poly (ADP-ribose) polymerase (PARP), anti-human cleaved PARP (Cell Signaling Technology), anti-human VEGF (Santa Cruz Biotechnology, CA, USA). Mouse isotype control IgG1κ fraction (MOPC-21) (Sigma®; Saint-Quentin Fallavier, France).

Cells and cell culture

B16F1 cells, a lung metastatic subline of murine B16 melanoma, were kindly provided by Dr M. Gregoire (INSERM UMRS 419, Nantes, France). They were cultured in RPMI-1640 medium supplemented with 5% Fetal Bovine Serum (FBS). Mock-transfected B16F1 cells (Mock-B16F1, transfected with pcDNA3 vector) and HLum-transfected B16F1 cells (Lum-B16F1, transfected by pcDNA3-HLum construct) were cultured as already described (1). HUVEC were purchased from PromoCell (Heidelberg, Germany) and were cultured in Endothelial Cell Growth Medium (ECGM PromoCell), supplemented with 0.4% (w/v) endothelial cell growth supplement/heparin, 5% (v/v) FBS, 10 ng/ml Epidermal Growth Factor (EGF), 1 µg/ml hydrocortisone, and 50 ng/ml amphotericin B. The medium was supplemented with VEGF or bFGF (15 ng/ml). Matrigel® (BD Biosciences) (10 mg/ml), mixed or not with lumican (10 µg/ml in 18 mM acetic acid), was added to a 24-well plate, (Nunc, Roskilde, Denmark), (300 µl per well). After 30 min of incubation at 37°C, 5x 10⁴ HUVEC cells were suspended either in a serum free endothelial cell growth medium or in the same medium supplemented with either bFGF (15 ng/ml) or VEGF (15 ng/ml) and then seeded onto the gel. Pseudotube formation was observed after 24h.

Animals

Female C57BL/6 mice were purchased from Harlan-France (Gannat, France). Animals were individually caged in a room with constant temperature and humidity, standard food and water ad libitum. All mice were acclimatized for one week before starting the experiments. The experiments were conducted according to the recommendations of the Centre National de la Recherche Scientifique. At day 0, 10⁵ B16F1 melanoma cells were injected in the tail vein of mice (n=5 for each group). At day 14th, mice were sacrificed and lungs collected for histological examination.

Histological stainings

Mice lung sections (5 µm) were stained with standard Hematoxyline Phloxin Safran solution (HPS). Masson’s Trichrome staining was also performed to visualize collagen fibres and blood vessels.

Immunohistochemistry

Tissue samples were fixed with 4% fresh paraformaldehyde in phosphate buffered saline (PBS), pH 7.2 at 4°C overnight. Serial sections (5 µm) of paraffin-embedded samples were processed for immunohistochemical studies as already described (1). After deparaffinisation, the sections were treated with 0.3% H₂O₂, for 10 min at room temperature to block endogenous peroxidase. The slides were heated in a pressure cooking in 10 mM sodium citrate buffer (pH 6.0), then washed in PBS and incubated with normal serum from the Vectastain® Universal Quick kit (Vector Laboratories, Burlingame, CA, USA) for 20 min at room temperature to block non specific binding. Then, the sections were incubated with the indicated primary antibodies at 4°C overnight. After washing with PBS, the slides were treated for 1 h at room temperature with the secondary antibody, either goat anti-rabbit (Vector Laboratories) or goat anti-mouse immunoglobulin (Vector Laboratories), depending on the primary antibody used. All secondary antibodies were peroxidase-labelled and stained with 3- amino-9-ethylcarbazole (Vector Laboratories). Counterstaining was performed with Harris hematoxyline.

Western immunoblotting

Increasing concentrations of human lumican core protein, (0, 10, 50 µg/ml), were added to the B16F1 cell culture medium for sixteen hours. Cells were harvested by scraping and subjected to protein extraction as already described (1). The protein concentration was determined by Bradford method (22). Following electrophoresis, proteins were transferred from polyacrylamide gels to nitrocellulose by electroblotting. The membranes were soaked in TBS-T solution (0.005% Tween 20, 20 mM Tris and 140 mM NaCl, pH 7.6) containing 5% BSA for 2 h. After washing, the membranes were incubated with primary antibodies at a final dilution of 1:1000 overnight at 4°C. The membranes were washed with TBS-T and probed with a 1:10000 dilution of a goat anti-rabbit secondary antibody conjugated to horseradish peroxidase in a solution of 1% BSA in TBS-T for 30 min at room temperature. After washing in TBS-T, the bands were revealed by the ECL Plus Chemiluminescence Detection kit (GE Healthcare, Little Chalfont, UK).

Cell migration quantification using time-lapse microscopy

HUVEC cells were seeded on uncoated, type-I collagen-coated or lumican-coated wells (120 µg per well in 12-well plates in 2 ml/well containing 5000 cells). Twenty four h after
seeding, cell motility analysis was performed using an inverted microscope (Axiovert 200M; Zeiss, Oberkoken, Germany) equipped with a small transparent environmental chamber (Climabox; Zeiss) with 5% (v/v) CO2 in air at 37°C. The microscope was driven by the Metamorph software (Roper Scientific, Evry, France), and images were recorded with a charge-coupled device camera (CoolSnapHQ; Roger Scientific). Cell migration was characterized and quantified using an interactive tracking method as already described (23).

For each individual cell, on each substratum, the following parameters of cell locomotion were studied: (i) the average migration speed of a single cell (µm/h) including the stationary phases or breaks in which the cell is not motile; (ii) the frequency of breaks (number/4h) and their mean length (min); and (iii) the velocity (µm/h) which represents for each cell its period of actual movement excluding breaks (24).

Image analysis

The mean surface of lung metastasis nodules was calculated from 7 different sections for each nodule by image analysis using ImageJ software (25). VEGF staining in lung metastasis nodules sections was quantified from the pictures by ImageJ software. The mean number of blood vessels was analysed from vWF-positive endothelial cells staining after retrieval of the melanin pigment background by threshold ingeneering with ImageJ software (NIH). The network of the capillary pseudotubes formed after 24 h by HUVEC seeded on Matrigel® was quantified by computer analysis ImageJ software and NeuronJ plug-in tool (25).

Statistical analysis

Results were expressed as mean ± standard deviation. For in vitro experiments, statistical significance between groups was assessed by unpaired Student’s t test. Differences with P<0.01 were considered significant. Statistical analysis of morphological data of lung metastasis nodules sections was performed using the non-parametric Mann-Whitney U rank sum test. The P value < 0.05 was considered statistically significant.

RESULTS

Lumican inhibits lung metastasis development

B16F1 melanoma cells injected in the mouse tail vein two weeks later developed lung metastasis nodules (Fig. 1). The mean number of lung metastasis nodules was significantly (P<0.001) decreased in mice injected with Lum-B16F1 cells compared to mice injected with Mock-B16F1 cells (Fig. 1C). Immunohistochemistry analysis showed that, in comparison to Mock-B16F1 cells (Fig. 1D), lumican was overexpressed in the metastatic nodules obtained with Lum-B16F1 cells (Fig. 1E). Fig. 2 shows Masson’s Trichrome stainings of representative lung metastasis from a Mock-B16F1 cells-injected mouse (Fig. 2A a-e) and a Lum-B16F1 cells-injected mouse (Fig. 2B a-d). The metastatic nodules were characterized by numerous melanin-positive B16F1 cells surrounding pre-existing blood vessels or bronchial epithelia. Small blood vessels and capillaries were

Fig.1. The influence of lumican on the formation of lung metastasis nodules. Lung metastasis nodules were obtained after injection of 10^5 mock-transfected (Mock-B16F1) (A) or HLum-transfected (Lum-B16F1) (B) B16F1 cells in the tail vein of syngenic C57BL6 mice, as described in Material and Methods. Lungs were collected at day 14th and the number of lung metastasis nodules was counted in each mice group (C). The bars represent median values. ** : P<0.001. The immunohistochemical staining of lumican expressed in mock-B16F1 (D) and Lum-B16F1 cells (E). Magnification X20 (D,E).
visible inside the nodules. Necrotic plaques could be observed in the Lum-B16F1 cells mice group (Fig. 2B a). Large variations in the number and in the size of the nodules within one section but also within one mice group were observed.

To better characterize the lung metastasis nodules of each mice group, the mean number and the mean surface of lung metastasis nodules were measured (Fig. 2C). The mean surface of the nodules was significantly lower (P<0.05) in the lumican-overexpressing mice group (5.3 x 10^6±3.0 x 10^6) in comparison to the control mice group (13.3 x 10^6±10.8 x 10^6), although large variations from one mouse to another within the same group was observed. Therefore, the microscopic results confirmed the macroscopic observations and suggested that overexpression of lumican might inhibit lung metastasis development.

Lumican induces B16F1 melanoma cell apoptosis in lung metastasis nodules

The proliferation of B16F1 melanoma cells within the nodules was investigated by immunohistochemistry with an antibody raised against cyclin D1 (Fig. 3A, B). The percentage of cyclin D1-positive nuclei was similar in both types of B16F1 cells independently of their lumican expression (34.1±15.0 and 38.8±14.4, respectively). Therefore, lumican expression seemed to have no significant effect on the proliferation of B16F1 melanoma cells within the nodules. The apoptosis of B16F1 was then investigated by immunohistochemistry on lung metastasis nodule sections with antibodies raised against apoptosis cell markers: cleaved caspase 3 and cleaved PARP. In contrast to Mock-B16F1 cells (Fig. 3C, E), metastasis nodules of Lum-B16F1 cells exhibited cleaved caspase 3 and cleaved PARP stainings in the cytoplasm and in the nucleus, respectively (Fig. 3D, F).

In order to confirm the pro-apoptotic effect of lumican overexpression, wild type B16F1 melanoma cells were incubated in vitro in the presence of increasing concentrations, (0, 10, 50 µg/ml), of recombinant human lumican core protein for sixteen hours. The expression of total caspase 3 and cleaved PARP was then analysed by Western immunoblotting from whole cell extract (Fig. 4). Noticeably, total caspase 3 expression was down-regulated in the presence of increasing concentrations of lumican while, concomitantly, cleaved PARP expression was up-regulated, confirming a pro-apoptotic effect of lumican on B16F1 cells.

These results suggest that lumican inhibits lung metastasis nodule growth by inducing tumour cell apoptosis within the metastatic nodules.

Lumican expression decreases VEGF expression and blood vessels density in lung metastasis nodules

VEGF expression in lung metastasis nodules was analysed by immunohistochemistry (Fig. 5A, B). The intensity of the staining...
was quantified by image analysis software in each mice group as shown in the upper right diagram. In comparison to Mock-B16F1 cells (Fig. 5A), Lum-B16F1 cells nodules (Fig. 5B) exhibited significantly lower ($P<0.05$) expression of VEGF. This result led us to investigate the density of the blood vessels network within the nodules of the lung metastasis of each mice group. Blood vessels were visualized using an antibody directed against vWF, a marker of endothelial cells (Fig. 5C, D) and the number of blood vessels within the nodules was counted, as shown in the lower right diagram. A significant ($P=0.05$) decrease of the mean number of blood vessels was observed in the metastasis nodules of Lum-B16F1 cells compared to the Mock-B16F1 cells control nodules. This result suggested that lumican might inhibit neo-angiogenesis in the metastasis nodules.

Lumican inhibits pseudotube formation in vitro

The ability of HUVEC to form pseudotubes on Matrigel® in vitro (Fig. 6A, B) was studied after addition of 10 µg/ml of recombinant lumican core protein within the gel (Fig. 6B). Twenty four hours after seeding, the presence of lumican within Matrigel® impaired pseudotube formation by the endothelial cells (Fig. 6B). The inhibitory effect of lumican in the endothelial basal cell medium was abolished by the presence of bFGF (15 ng/ml) or VEGF (15 ng/ml) (data not shown). These *in vitro* results confirmed the angiostatic effects of lumican previously observed *in vivo*.

Lumican inhibits in vitro endothelial cell migration

The proliferation of endothelial cells was investigated by immunohistochemistry with an antibody raised against cyclin D1 (data not shown). The percentage of positive cyclin D1 nuclei in endothelial cells was not significantly affected by lumican coating compared to controls (16.4±4 and 17.5±3, respectively). Therefore, lumican had no significant effect on the proliferation of endothelial cells. The apoptosis of endothelial cells was then investigated by Hoechst labelling. The percentage of endothelial cells with moon shape nuclei or condensed chromatin was very low (3%) and was not affected by the presence of lumican. The absence of effect of lumican on HUVEC cell proliferation and apoptosis led us to study the effects of lumican on endothelial cell migration. Continuous single cell tracking permitted to visualize the trajectories of cells grown on plastic, type I collagen, or lumican coatings. In contrast to uncoated surfaces (Fig. 7A) or type I collagen (Fig. 7B), lumican drastically decreased the trajectory of endothelial cells (Fig. 7C). On plastic or type I collagen, cells moved along a more linear path or a more winding path, while cells cultured on lumican exhibited shorter or circular trajectories around their starting points (Fig. 7A). The migration speed of endothelial cells on plastic or on type I collagen was 28 % higher ($P<0.01$) than on lumican (Fig. 7D). In addition to the migration speed (µm/h) which denotes the average speed of a single cell over the whole observation time, the stationary phases or breaks...
(frequency and length), in which the cell is not motile, and the velocity (µm/h) which represents for each cell its period of actual movement excluding breaks, were analysed (24). As shown in Fig. 7E, which represents the distance of migration every 30 min for 24 h, no break was detected whatever the nature of the substratum. The migration of endothelial cells was 25% higher on a collagen matrix or on plastic than on lumican (P<0.05).

Altogether, these results indicate that lumican inhibits lung metastasis nodules growth not only by inducing melanoma cell apoptosis but also by inhibiting endothelial cell migration and therefore angiogenesis within the lung metastasis nodules.

DISCUSSION

In this study, we showed that lumican the ECM protein, decreased experimental lung metastasis development in mice by increasing tumour cell apoptosis, by decreasing VEGF expression and by decreasing the neovascularization.

The development of tumour metastasis is a multistep process. Key step of this process is the interaction of tumour cells with the extracellular matrix macromolecules. On the other hand, ECM influences the behaviour of tumour cells. We previously demonstrated that recombinant human lumican inhibited the development of B16F1 primary tumours in mice by inducing tumour cell apoptosis (1). This effect was characterized by an increase of cell adhesion mediated by β1 integrin expression and an inhibition of the migration of melanoma cells (15). The apoptosis in lumican-expressed tumour nodules was characterized by enhanced immunostaining of cleaved PARP and cleaved caspase 3. In vitro, a significant decrease of caspase 3 expression and an increased expression of cleaved PARP in wild type B16F1 cells incubated with increasing amounts of lumican core protein were observed without alteration of the proliferation rate. Pro-apoptotic effect of lumican was already described in cornea (26-28) and in primary tumours containing melanoma cells (1). Data from Goldoni et al. suggest a role for decorin, another member of the SLRP family, as a powerful and effective therapeutic agent against breast cancer due to its inhibition of both primary tumour growth and metastatic spreading to the lungs associated with a pro-apoptotic effect (29, 30). In our study, apoptotic melanoma effect was not observed in the control mice group.

In contrast, the VEGF immunostaining and the number of blood vessels within the lung metastasis nodules were decreased in the lumican-expressing nodules. In vitro, pseudotube formation on Matrigel® by endothelial cells (HUVEC) was inhibited by lumican. Moreover, in comparison to type I collagen coating or plastic, lumican coating induced a significant alteration of the endothelial cell trajectory and a decrease of their migration speed. B16F1 cells induce angiogenesis in metastatic nodules by stimulation of VEGF expression in distant organs. Angiogenic capacity of metastatic B16F1 cells has been widely described (31, 32). B16F1 cells metastatic potential can be increased by their enhanced release of bFGF and VEGF after phorbol ester treatment (33). Compared to mock-transfected B16F1 cells, a significant decrease of the mean number of blood vessels was observed in lung metastatic nodules developed from lumican-transfected B16F1 cells. Thus, the inhibition of the metastatic spreading to the lungs might also depend on the anti-angiogenic properties of lumican (19, 20, 34). It must be pointed out that decorin, another...
member of the SLRP family, was also described to suppress tumour cell-mediated angiogenesis (35). Decorin was shown to inhibit endothelial cell migration by interfering with VEGF-stimulated NO release (36-38). In our study, the VEGF staining intensity was significantly decreased in the nodules obtained with lumican-transfected cells. This decreased VEGF expression may contribute to the decreased nodule vascularization that we observed. It will be interesting to assess if lumican inhibits the angiogenesis in another type of tumours (39-41). Moreover, the decreased vascularization might depend on a direct inhibition of neoangiogenesis by lumican, as suggested by its capacity to inhibit in vitro pseudotube formation by endothelial cells. Albig and collaborators (20), monitored the effects of recombinant lumican on human microvascular endothelial cells (HMEC) and HUVEC. Recombinant lumican significantly diminished the activation of p38 MAPK in response to VEGF or bFGF in HMEC cells. In that study, lumican inhibited the invasive capacities of HMEC only, whereas HUVEC appeared insensitive to its angiostatic activity. These observations suggest that lumican mediates angiostasis in an endothelial cell- and context-specific manner, confirming the observation that lumican inhibited angiogenic sprouting of HUVEC cells was inefficient after treatment with VEGF or bFGF.

Lumican was able to inhibit pseudotube formation in Matrigel® without affecting endothelial cell apoptosis or proliferation. Therefore, we investigated whether lumican could interfere with the motility of endothelial cells. For that purpose, HUVEC were tracked by videomicroscopy for 24 h on glass coverslips or on type I collagen coating, or lumican coating. The trajectory of endothelial cells was completely different in the presence of lumican compared to glass or collagen substratum. Cell mobility was poor on lumican coating, most of the cells making shorter or circular trajectories around their starting points. Their mean speed was also significantly decreased. These results show that the endothelial cell migration is strongly decreased in the presence of lumican. We recently showed that melanoma cell migration was also inhibited by lumican. This inhibition was correlated with altered cytoskeleton network (16). The inhibition of the migration of endothelial cells in presence of lumican might also be involved in angiostatic activity. Similar activity was previously described for decorin (36, 37, 42-46) and for the NC1 domain of type XIX collagen (47).

Taken together, our data demonstrate that lumican expression inhibits the formation of lung metastatic nodules in a mouse experimental model of melanoma. This effect seems to be due to a pro-apoptotic effect on tumour cells and to an inhibition of tumour neoangiogenesis in the metastasis nodules. Further investigations will be necessary to analyse the signalling pathway and the molecular mechanisms by which lumican exerts its angiogenic activities within normal and diseased vascular microenvironments.

Acknowledgement: The financial support of the Institut National du Cancer (ACI 2007-2009 Canceropôle Grand-Est), FEDER (CPER 2007) Region Champagne-Ardenne, and the Ligue Nationale contre le Cancer (comite de la Marne) is gratefully acknowledged. Dr Vuillermoz present address is: IDD Biotech, 62572 Dardilly, France.

Conflict of interests: None declared.

REFERENCES

14. Sifaki M, Assouti M, Nikitovic D, Krasagakis K, Karamanos NK, Tzanakakis GN. Lumican, a small leucine-rich proteoglycan substituted with keratan sulfate chains is expressed and secreted by human melanoma cells and not normal melanocytes. JUBMB Life 2006; 58: 606-610.

30. Goldoni S, Iozzo RV. Decorin, biglycan, lumican, and fibromodulin. *Biochimie Medicale et Biologie Moleculaire, CNRS UMR 6237, Faculte de Medecine, F51095 Reims Cedex, France; Phone: +33-326-913532; Fax. +33-326-918055; E-mail: stephane.brezillon@univ-reims.fr

Received: August 5, 2009
Accepted: September 10, 2009

Author’s address: Dr. Stephane Brezillon, Laboratoire de Biochimie Medicale et Biologie Moleculaire, CNRS UMR 6237, Faculte de Medecine, F51095 Reims Cedex, France; Phone: +33-326-913532; Fax. +33-326-918055; E-mail: stephane.brezillon@univ-reims.fr