INTRODUCTION

Parkinson’s disease (PD) is an age-related neurodegenerative disorder and the most prevalent movement disorder (1). The features of PD comprise resting tremors, rigidity, bradykinesia, autonomic dysfunction and sleep disturbance (2). Dopaminergic system dysfunction is essential in PD pathogenesis (3).

Rotenone is a crystalline isoflavone commonly used as an insecticide and pesticide. Rotenone inhibits systemic mitochondrial complex I activity, with subsequent behavioral deficits in rodents resembling PD (4-6). Mitochondrial dysfunction generates reactive oxygen species (ROS) that may result in damage to DNA, impaired neuronal function and death causing neurodegeneration (7-9) characterized by build-up of different types of genomic DNA damage (10).

Strong evidence proposes that brain oxidative DNA damage and microglia activation contribute to Parkinson’s disease (PD) pathogenesis. Traditional therapeutic regimens for PD can only relieve the symptoms. *Tribulus terrestris* (*T. terrestris*), a flowering plant from family Zygophyllaceae, is used in traditional medicine for treating different disorders and exerts neuroprotective and antioxidant effects in experimental models. The current study attempted to test whether treatment with *T. terrestris* standardized extract (TTE) can improve motor dysfunction and alleviate rotenone induced oxidative DNA damage and neurotoxicity in mice. Six groups of male Swiss albino mice were utilized. Group (1) was the vehicle (oil) group, group 2 was the rotenone control group (1 mg/kg/48 hours, subcutaneously) for 9 times, groups 3 and 4 were injected with rotenone and treated with TTE (5 or 10 mg per kg, by oral gavage) for 17 days, groups 5 and 6 served as TTE (5 or 10 mg per kg) per se groups. Motor function was measured by the pole and the open-field tests. Then, mouse brains were dissected, one hemisphere was employed for biochemical assays and the other one was used in histopathological studies. Results demonstrated that TTE ameliorated the motor dysfunctions induced by rotenone as well as markers of inflammation and DNA damage (8-OHdG and MTH1 expression). Indicators of oxidative stress and upregulation of the microglia marker (CD 11 b) were suppressed by the higher dose of TTE (10 mg per kg). Finally, the higher dose of TTE improved the Cresyl violet staining and tyrosine hydroxylase immunostaining in the substantia nigra. In summary, TTE ameliorated the locomotor dysfunction and dampened the DNA damage and oxidoinflammatory stress in rotenone-parkinsonian mice. These results suggest TTE as a potential candidate for neurodegenerative diseases.

Key words: dopaminergic neurons, oxidative damage, Parkinson’s disease, rotenone, Tribulus terrestris, inflammation, microglia, cyclooxygenase-2, nitric oxide synthase
The key product of DNA oxidation is 8-hydroxy-deoxyguanosine (8-OHdG), which results in transcriptional mutagenesis and the generation of mutated species of protein that contribute to PD pathogenesis (15, 16). Human and rodents have MTH1 enzyme that hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-2-deoxyguanosine triphosphate and 2-hydroxy-20-deoxyadenosine triphosphate to the monophosphate forms (17).

Cumulative evidence has shown that phytochemicals such as nutraceuticals can alleviate neurodegenerative diseases through multiple mechanisms (4, 18, 19). _T. terrestris_ is a plant from family Zygophyllaceae grows in tropical regions (20). This plant was commonly utilized in traditional Indian and Chinese folk medicine for treating some disorders and may boost male sexual functions (21). _T. terrestris_ and related species have antioxidant properties against experimentally induced oxidative stress (22, 23). The fruit of _T. terrestris_ contains active ingredients such as phytoesterooids, flavonoids, alkaloids, glycosides, steroidal saponins of the furostanol type, which produce anti-inflammatory effects (24). These compounds inhibit prostaglandin biosynthesis, NO production and cyclooxygenase-2 (COX-2) activity (25). Harmine is a β-carboline alkaloid that represents one of the key components in _T. terrestris_ that participates in the pharmacological activities. Harmine reportedly inhibits monoamine oxidase and supports increased brain dopamine levels (26). Modern research indicates that flavonoids and steroidal saponins with noticeable antiaging and anti-inflammatory activities of _T. terrestris_ extract (TTE) are responsible for this pharmacological activity (27). Adverse effects of TTE are rare however, some users report an upset stomach or gynecomastia (28).

This study tested the neuroprotection provided by TTE against neurodegeneration in rotenone parkinsonian mice. The usefulness of TTE was determined through measuring striatal dopamine and investigating the integrity of SNpc dopaminergic neurons by histopathological and immunohistochemical methods. The mechanism of this putative neuroprotective effect was clarified by focusing on the antioxidant and anti-inflammatory activities of TTE.

MATERIALS AND METHODS

List of materials

Rotenone was purchased from Sigma-Aldrich (MO, USA) and dissolved in sunflower oil for systemic administration (29, 30). Commercial tablets containing 1000 mg standardized TTE (containing minimum 45% saponins) were purchased from Now Sports Co. (USA). Tablets were ground in a mortar, dissolved in distilled water and given by oral route for 17 days from day 1 until day 17 (31). Control mice received equivalent volume of distilled water orally for 17 days.

Mice and experimental conditions

This work was performed using forty-two adult male Swiss albino mice with an initial body weight equals 20 – 28 g. Mice were supplied by Moustafa Rashed Company (Giza, Egypt) and kept under standard conditions in a hygienic area and with a normal light/dark cycle. Mice were acclimatized for 10 days during which regular chow diets were replenished daily at 9 a.m. with food and tap water provided ad libitum.

The study was carried out in compliance with the Declaration of Helsinki. Approval of the experimental protocols was obtained from the research ethics committee at the Faculty of Pharmacy at Suez Canal University.

Study protocol

Groups containing 7 mice each were assigned in the following order:

Group I: Vehicle control group: mice in this group received 10 ml/kg vehicle (sunflower oil) by subcutaneous injection every 48 ± 2 h for nine times.

Group II: Experimentally parkinsonian group: mice in this group were subjected to induction of parkinsonism by receiving nine subcutaneous doses of rotenone (1 mg per kg) that were repeated each 48 ± 2 h (4).

Groups III and IV: rotenone + TTE (5 or 10 mg per kg) groups: Parkinsonism was induced by injection of rotenone (1 mg per kg / 48 ± 2 h, 9 doses) and mice received TTE (5 or 10 mg per kg, daily) (21, 22, 32, 33) from day 1 to day 17. Both control and rotenone groups (groups 1 and 2) received distilled water (12 ml per kg, by oral gavage) daily parallel to doses of TTE in groups 3 and 4. TTE and distilled water were administered by oral gavage.

Group V and VI: TTE per se groups: mice were injected with vehicle (sunflower oil, s.c.) every 48 ± 2 h for 9 times and concomitantly received TTE (5 or 10 mg per kg, daily). These groups served as drug control groups to highlight any changes in locomotor activity or the architecture of the SNpc due to the per se administration of _T. terrestris_.

Assessment of mouse motor performance

One day after the end of the therapeutic period (day 18), mice in the experimental groups were screened for motor activity using the following tests.

1. **Pole test performance**

Pole test is generally employed for the assessment of motor dysfunction after striatal dopamine depletion (34). Every mouse was placed facing upward on the top of a pole standing vertically (50-cm-long and 1 cm in diameter/made of wood) while the pole base was positioned in the mouse home cage and tilted at 45° from the base of the cage to stand on a nearby wall. Mice were placed with their heads directed upwards on the upmost part and were forced to attempt descending the pole to enter the home cage. The time that mice spent descending the pole to the home cage (descending time in seconds) was recorded. The best performance among the 5 trials was utilized for comparison (35, 36).

2. **Open-field performance**

An arena made of plexiglass (60 × 60 cm) with 30-cm high surrounding walls was used for evaluation of non-forced ambulation in animal models (19, 37, 38). The floor of the arena was highlighted to form an 8 × 8 cm rectangular unit’s pattern. A central zone was set as a 16 × 16 cm rectangle at the middle of the arena. The apparatus was cleaned between trials with water and soft tissues. Animals were placed independently into the arena center and a video was recorded for a 5-min period by a camera installed above the box. Then, videos were used to determine the behavioral indicators by a trained observer in a blinded manner. Horizontal movement (the total count of squares crossed by the mouse body) and the number of stops (the number of occasions the mouse stopped after a period of locomotion) were recorded. Furthermore, an activity index was defined as the whole count of squares crossed by mice in 5 min divided by the count of stops; this determines the length of a locomotor interval (6). Furthermore, the sum of entries and time consumed at the central zone were also determined as indicators for anxiety behavior (39, 40).
Brain tissue sampling

After motor behavior tests, mice were anesthetized by an intraperitoneal injection of ketamine (75 mg per kg) and killed via cervical dislocation. Next, the brains were collected and washed with ice-cold phosphate-buffered saline (PBS) and dissected midsagittally into two halves. One of the hemispheres (left one) was fixed overnight in 4% parafomaldehyde followed by paraffin embedding. Then, 4 µm sections were cut at the SN level and stained with hematoxylin-eosin (HE) or Cresyl violet. From each frozen right hemisphere, striata were isolated and weighed. Striata were homogenized in PBS using a teflon homogenizer, sonicated and centrifuged for a 15-min period at 2000 x g. Then, supernatants were aliquoted and frozen at −20°C for measuring dopamine and oxidation parameters. Otherwise, pieces from the striata were processed for measuring mRNA expression of the selected genes.

Histopathological studies and immunohistochemical analysis

Neurodegeneration was evaluated in H + E stained SNpc neurons by observing pyknotic neurons in each nigral section. Degenerating neurons were identified by visible nuclei and complete outlines. Counting was done in a blinded manner. Immunostaining in the SNpc was imaged at × 400 and images were investigated to count TH positive neurons containing visible nuclei. Counting was done in a blinded manner.

Biochemical assays

1. Determination of striatal dopamine level

Dopamine levels are most commonly determined by enzyme-linked immunosorbent assay (ELISA) (4) HPLC (42) or intracerebral microdialysis (43). In the current study, samples were thawed at room temperature. A dopamine ELISA kit from Sun Red Bio Company (China) was utilized to estimate of the concentration in the striatal homogenate. Assays were performed according to the directions listed by the manufacturer.

2. Determination of striatal level of oxidative stress markers

The supernatants were utilized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) as well as the activity of catalase (CAT) and superoxide dismutase (SOD) by spectrophotometric kits (Biodiagnostic, Co., Cairo, Egypt). MDA was measured in the homogenate by determining thiobarbituric acid reactive species following a previous method (44). GSH was also determined following a previously designated method (45). This method relies on the reaction between Ellman’s reagent and GSH to produce a yellowish compound that has a distinctive absorption at 412 nm. Finally, SOD activity was proportional to the degree of impairment of the nitroblue tetrazolium reduction by superoxide (46). CAT activity was estimated through determination of the breakdown of H2O2 (47). Quantitative measurement of the reduction in the absorbance was measured at 240 nm.

3. Determination of striatal mRNA expression for CD11b, inducible nitric oxide synthase and cyclooxygenase-2

An SV total RNA isolation system from Promega (Madison, USA) was used to extract total RNA from the homogenate. Content and purity of RNA were estimated by a UV-spectrophotometer. Complementary DNA (cDNA) synthesis was done using a 1 μg RNA sample. Then, a SuperScript III First-Strand Synthesis System (#K1621, USA) was used according to instructions of the manufacturer. Real-time quantitative PCR was done through the following steps. First, amplification and analysis were completed using Applied Biosystem software (StepOne™, USA). The designed primer sequences for CD11b (a marker for microglia cells), inducible nitric oxide synthase (iNOS) (48) COX-2 (49) and GADPH (50) are illustrated in Table 1. Second, calculation of data was performed employing the v1.7 sequence detection program (PE Biosystems, USA). The comparative Ct method was used to identify the relative expression of the studied genes. Finally, normalizing data was done to β-actin and reported as the fold-change over the control group.

Table 1. Primers and annealing temperatures used in real-time PCR reactions.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primers</th>
<th>Annealing temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>COX-2</td>
<td>Forward: TGACAGTCCACCTACTTACAAT</td>
<td>50°C</td>
</tr>
<tr>
<td></td>
<td>Reverse: CTCCACCAATGACCTGATA</td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>Forward: ATGGACGCTGTAGGGCAATACC</td>
<td>55°C</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCCCCATTCAGCTTCCCA</td>
<td></td>
</tr>
<tr>
<td>iNOS</td>
<td>Forward: TTCAACCAGTTGTCATGCACCTA</td>
<td>57°C</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCCATGTCACCTCACAACAGA</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>Forward: AGAGGGAAATCTGCGTGAC</td>
<td>54°C</td>
</tr>
<tr>
<td></td>
<td>Reverse: ACGGGCACGTCATCAATTG</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Primers and annealing temperatures used in real-time PCR reactions.
spectrophotometer (NA-1000 UV/Vis, ThermoFisher) was employed for checking the strength and purity of DNA. Next, DNA was exposed to horizontal agarose gel electrophoresis as described previously (4). Then, visualization of the DNA ladder was done by the aid of a UV- trans-illumination.

2. Determination of 8-OHdG by an ELISA kit

Estimation of 8-OHdG was done using an ELISA kit from CUSABIO. The assay employed the quantitative sandwich enzyme immunoassay technique where 8-OHdG antibodies were pre-coated onto a microplate. Samples and standards were transferred into wells and any existing 8-OHdG was bound by the free antibody. Following removal of unbound substances, a biotin-conjugated antibody against 8-OHdG was added to the wells. Next, following the washing step, avidin-conjugated horseradish peroxidase was transferred to the wells. After a wash, substrate solution was added to the wells and the colour produced was proportional to the concentration of 8-OHdG. The colour development is stopped and the intensity of the colour is measured.

3. Real-time quantitative RT-PCR analysis for MTH1

Total RNA was extracted from brain tissue specimens obtained from each group using TRIzol reagent (Invitrogen, USA). cDNA synthesis was done employing RT reagent kit (Invitrogen, USA). Real-time quantitation of MTH1 mRNA was done using a lightcycler-Faststart DNA master SYBR green I Roche PCR kit in a Roche LightCycler 2.0 detection system following the manufacturer’s protocol. MTH1 cDNA forward and reverse primers were 5'-AAAGTGCTTGTAGGCTGGAG-3' and 5'-TCTCTGGAAGGAGGTGGG-3', respectively. GAPDH was selected as an endogenous control. The GADPH forward and reverse cDNA primers were 5'-GTTGTCTCCTGCGACTTCA-3' and 5'-TGTTCCAGGGTTCTTACTC-3', respectively. The expression of each sample relative to the GAPDH control gene was calculated employing the comparative Ct method.

Statistical analyses

Data are demonstrated as mean ± SD and were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s multiple-comparisons test. All probable comparisons were detected among the experimental groups. Statistical analysis was done applying the Statistical Package of the Social Sciences (SPSS) program and the GraphPad Prism software. Differences were considered statistically significant at P < 0.05.

RESULTS

Compared with vehicle-injected mice, rotenone treated mice spent 11-fold more time descending in the pole test (14.14 ± 4.26 versus 166.17 ± 43.33). Compared with rotenone treatment, TTE (5 or 10 mg/kg) treatment shortened the time to descend the pole versus 166.17 ± 43.33). Compared with the vehicle control, treatment with TTE (5 or 10 mg/kg) did not produce a difference in the number of entries or time spent within the central zone (4.57 ± 0.79 entries versus 5.76 ± 1.03 entries and time consumed within the central zone = 9.14 ± 1.05 s versus 13.57 ± 2.14 s, respectively). Furthermore, the rotenone + TTE (5 or 10 mg per kg) groups presented fewer entries than did the rotenone control group (3.43 ± 1.13 and 3.83 ± 0.98 versus 7.67 ± 1.03 entries) and spent less time within the central zone than did the rotenone control group (mean = 7.14 ± 1.047 and 6.14 ± 3.2 s versus 13.57 ± 3.2 s). Importantly, compared with the vehicle control, treatment with TTE (5 or 10 mg/kg) did not produce a difference in the number of entries or time spent in the central zone (4.57 ± 0.79 entries versus 5.76 ± 0.98 and 4.71 ± 0.76 and 9.14 ± 1.05 s versus 9.43 ± 0.82 and 8.36 ± 1.02, respectively, Fig. 2E and 2F). Minor percentage of pyknotic neurons in the study groups is shown in Fig. 2G.

Cresyl violet staining demonstrated that normal SNpc neurons exhibited clear distinct nuclear membranes in the vehicle group (Fig. 3A). However, SNpc from rotenone group showed a mixture of normal and degenerated neurons in a ratio of 3:1 per high-power field. Degenerated SNpc neurons exhibited cytoplasmic vacuoles with irregular faint nuclei, or irregular pyknotic nuclei (Fig. 3B). Treatment with 5 or 10 mg/kg TTE caused improvements in the histopathological features and produced greater number of normal neurons and fewer degenerated neurons (Fig. 2C and 2D). Per se treatment with 5 or 10 mg/kg TTE resulted in normal neurons with pale eosinophilic cytoplasm (Fig. 2E and 2F). The mean percentage of pyknotic neurons in the study groups is shown in Fig. 2G.
Fig. 1. Effect of *T. terrestris* extract on the mice performance in the pole test and the open-field test. (A): Time to descend in the pole test. Time to descend was calculated from the moment of putting the animal on the titled rod until it descends to its home cage (s). Naive mice were introduced individually into the open field arena and motor activity was monitored for 5 min. No. of squares (B), Number of stops (C), activity index (D), number of entries to the central zone (E) and time spent in the central zone (F). Activity index was calculated by dividing the No. of crossed squares by the No. of stops for each mouse. Data are means and SD and analyzed using one-way ANOVA followed by Tukey’s test. P-value < 0.05 was set as the accepted level of significance. * Compared to vehicle group; † compared to rotenone group, Ω compared to rotenone + TTE (5 mg/kg) group.
Biochemical analysis confirmed that rotenone-treated mice presented one-quarter (25%) of the striatal dopamine level in the vehicle-treated mice. Compared with treatment with rotenone, treatment with 10 mg/kg TTE—but not the low dose—significantly improved dopamine levels. Compared with treatment with the vehicle, per se treatment with TTE (5 or 10 mg/kg) did not show a

Fig. 2. Effect of *T. terrestris* extract (5 or 10 mg/kg) on the histopathologic picture of the substantia nigra of rotenone-parkinsonian mice. Photographs for sections from the substantia nigra pars compacta stained with hematoxylin and eosin. (A): Photograph from substantia nigra from mice treated with sunflower oil showing normal neurons (thin arrows) exhibiting large vesicular nuclei, prominent nucleoli and pale eosinophilic cytoplasm (H&E × 300). (B): Photographs from substantia nigra of rotenone group showing mixed normal neurons (thin arrows) and degenerated neurons in proportion 3:1 per high-power field, the degenerated neurons exhibit, cytoplasmic vacuoles wih irregular faint nuclei (arrow head), or irregular pyknotic nuclei (thick arrow). (C): Photograph from substantia nigra from rotenone group showing mixed normal neurons (thin arrow) and degenerated neuron (arrow head) (H&E × 300). (D): Photographs from substantia nigra from mice treated with rotenone + *T. terrestris* extract (10 mg per kg) showing normal neurons (thin arrows) and few degenerated neurons (H&E × 300). (E); and (F): Photographs for substantia nigra from mice groups received per se treatment with *T. terrestris* extract (5 or 10 mg per kg) showing normal neurons with large vesicular nuclei and prominent nucleoli (white arrows) (H&E × 400). (G): Column chare demonstrating the percent of pyknotic cells in the experimental groups. Data are mean ± SD and were analyzed using one-way ANOVA and Tukey’s test. P-value < 0.05 was set as the accepted level of significance. * Compared to vehicle group, † compared to rotenone group, ‡ compared to rotenone + TTE (5 mg/kg) group.
Fig. 3. Effect of *T. terrestris* on viability of neurons stained with Cresyl violet stain. Photomicrographs for sections from the substantia nigra pars compacta from the experimental groups. (A): Photograph from substantia nigra showing normal neurons, exhibit clear and distinct nuclear membrane (Cresyl violet × 300). (B): Photograph from substantia nigra form rotenone group showing mixed normal neurons (thin arrows) and degenerated neurons, the degenerated neurons exhibit cytoplasmic vacuoles with irregular faint nuclei (arrow heads), or irregular pyknotic nuclei (thick arrow) (Cresyl violet × 300). (C) and (D): Photographs from substantia nigra of mice treated with *T. terrestris* extract (5 or 10 mg/kg), respectively, showing mixed normal neurons (thin arrows) and degenerated neurons, the degenerated neurons exhibit cytoplasmic vacuoles with irregular faint nuclei (arrow head), or irregular pyknotic nuclei (thin arrow) (Cresyl violet × 400). Photograph from substantia nigra showing normal neurons (thin arrows) and few degenerated neurons (Cresyl violet × 300). (E) and (F): Photographs for substantia nigra from mice groups received *per se* treatment with *T. terrestris* extract (5 or 10 mg per kg) showing normal neurons (white arrows) (Cresyl violet × 400). (G): Column chart demonstrating the percent of viable neurons in the experimental groups. Data are mean ± SD and were analyzed using one-way ANOVA and Tukey’s test. P-value < 0.05 was set as the accepted level of significance. * Compared to vehicle group, † compared to rotenone group, Ω compared to rotenone + TTE (5 mg/kg) group.
difference in striatal dopamine levels (Fig. 5A). In addition, striatal mRNA expression of CD11b, COX-2 and iNOS was upregulated in rotenone control group compared to that in the vehicle group. Compared to the rotenone group, the rotenone + TTE (10 mg/kg) group showed downregulated CD11b expression. However, the rotenone + TTE (5 or 10 mg/kg) groups displayed lower COX-2 (dose-dependent effect) and iNOS expression than did the rotenone control group. Compared with treatment with vehicle, *per se* treatment with TTE (5 or 10 mg per kg) showing normal neurons (white arrows) (Cresyl violet × 400). (G): Column chart demonstrating TH immunostaining (%) in the experimental groups. Data are mean ± SD and were analyzed using one-way ANOVA and Tukey’s test. P-value < 0.05 was set as the accepted level of significance. * Compared to vehicle group, † compared to rotenone group, Ω compared to rotenone + TTE (5 mg/kg) group.

Fig. 4. Effect of T. terrestris extract on nigral immunohistochemical staining for tyrosine hydroxylase. Photographs for sections from the substantia nigra pars compacta immunostained for tyrosine hydroxylase. (A): Photograph from substantia nigra pars compacta in mice treated with sunflower oil showing strong cytoplasmic staining of the normal neurons with tyrosine hydroxylase (TH × 400). (B): A photograph for sections from rotenone group showing some very strong positive staining in normal neurons (red arrow) and a lack of staining showing degenerative neurons (blue arrow), (TH × 400). (C): A photograph from the substantia nigra showing strong cytoplasmic TH immunostaining in regenerated neurons and some degenerated neurons (TH × 400). (D): A photograph from the substantia nigra showing strong cytoplasmic TH immunostaining in most of regenerated neurons (TH × 400). (E): and (F): Photographs for substantia nigra from mice groups received *per se* treatment with T. terrestris extract (5 or 10 mg per kg) showing normal neurons (white arrows) (Cresyl violet × 400). (G): Column chart demonstrating TH immunostaining (%) in the experimental groups. Data are mean ± SD and were analyzed using one-way ANOVA and Tukey's test. P-value < 0.05 was set as the accepted level of significance. * Compared to vehicle group, † compared to rotenone group, Ω compared to rotenone + TTE (5 mg/kg) group.
Oxidative stress markers indicated greater MDA levels but lower GSH, SOD and CAT levels in the rotenone group than in the vehicle (oil) group. Only the high dose of TTE (10 mg/kg) ameliorated these markers; compared with the rotenone group, rotenone + TTE (10 mg/kg) group showed less MDA and more GSH, SOD activity and CAT activity.

Per se treatment with TTE (5 or 10 mg/kg) resulted in a difference in these markers (Fig. 6A-6D).

Fig. 7 shows the DNA ladder for striatal specimens from the study groups. A DNA sample from the striata of the vehicle group showed intact DNA band while a sample from the rotenone group showed a greater level of laddering. Mice treated with TTE (10 mg/kg) presented a better quality DNA band than did mice treated with rotenone. Mice received per se treatment with TTE 5 or 10 mg per kg showed intact DNA bands (Fig. 7A). Striatal 8-OHdG concentration and MTH1 expression showed significant increases in the rotenone group compared with those in the vehicle group. Compared to the rotenone control group, the rotenone + TTE (5 or 10 mg per kg) group showed significant decreases in 8-OHdG and MTH1 (Fig. 7B and 7C).

Fig. 5. Effect of T. terrestris extract (5 or 10 mg/kg) on striatal dopamine, mRNA expression of CD11b, cyclooxygenase-2 and iNOS in striata of mice. T. terrestris extract was given orally to mice daily for 17 days. Striatal level of dopamine (A), CD11b (B), cyclooxygenase-2 (C) and inducible nitric oxide synthase (D). CD11b: a marker for microglia in brain, COX-2: cyclooxygenase, iNOS: inducible nitric oxide synthase. Data are mean ± SD and analysis was performed by one-way ANOVA followed by Tukey’s post-hoc test. P-value < 0.05 was set as the accepted level of significance. * Compared to vehicle group, † compared to rotenone group, Ω compared to rotenone + TTE (5 mg/kg) group.
DISCUSSION

The effectiveness of TTE was examined in the present study using the rotenone parkinsonian model, which recapitulates both the clinical symptoms and pathological abnormalities of PD and induces selective neurotoxicity to dopaminergic neurons (51). The current study elucidated a protective effect for TTE against rotenone induced neurodegeneration and highlighted a novel role of TTE in suppressing oxidative DNA damage and CD11b expression.

In this study, rotenone injection into mice induced a parkinsonian-like phenotype. This phenotype was demonstrated by the impaired locomotor function assessed in two well-documented behavioral tests, the pole test and open-field tests. Furthermore, histopathological examination revealed greater number of pyknotic neurons while immunohistochemistry indicated lower percentage of TH-positive neurons. Moreover, biochemical analyses revealed a decrease in striatal dopamine and GSH as well as a rise in lipid peroxidation, inflammatory markers, DNA damage and expression of the microglia antigen, CD11b.

According to previous studies, rotenone injection in rodents leads to impairments in locomotor activity in many behavioral paradigms such as the open-field test (19, 37, 52), pole test (4),...
rotarod test (18, 19), rears test (29, 30), catalepsy test (6, 53),
grid test (30) and stepping test (54). Rotenone also reportedly
increases anxiety-like behavior in mice tested in the elevated
plus maze (55).

Under normal conditions, neurons containing TH are
responsible for catalysis and converting L-tyrosine to DOPA
(56). TH is a cytosolic enzyme in catecholamine-containing cells
and is depleted in conditions of neuronal toxicity among
dopaminergic neurons (56). Depending on the decline in TH,
neurotoxicity was markedly apparent in the SN following
rotenone treatment. Our finding was consistent with a previous
study in which systemic treatment with rotenone was
administered for two months reducing TH in the striatum and
caudate putamen (57) and depleting TH in the SN neurons (4, 6).

It is mostly important to consider that the crosstalk between
inflammation and oxidative stress rises proportional with age,
which results in the accumulation of malfunctioning
mitochondria and more ROS (58). The accumulation of ROS
leads to cell damage and subsequent activation of inflammatory
mediators which ultimately results in a state of cellular
senescence (59). Senescent cells release pro-inflammatory
cytokines (60). In human parkinsonism, the endless generation
of ROS through autoxidation and MAO metabolism for
dopamine and the existence of iron and low GSH levels were
detected in the SNpc compared to those in other brain areas (61,
62). In PD, an increase in oxidative damage to DNA in nuclei
and mitochondria was detected in SN dopamine-producing
neurons (63).

In the current study, rotenone parkinsonian mice showed
striatal DNA fragmentation and increases in striatal 8-OHdG
levels and MTH1 expression. Similarly, oxidative DNA damage
in the form of oxidized guanine is retained in the mitochondrial
and nuclear DNA of dopamine-producing neurons of the SN in
PD (64). Furthermore, 8-OHdG dramatically increased in post-
mortem samples of the SN from parkinsonian brains (17, 65). As
a result of oxidative stress, the content of common deletions in
mitochondrial DNA increased in the few surviving dopamine
producing neurons in the parkinsonian SN (66).

The MTH1 gene encodes 8-oxo-7,8-dihydrodeoxyguanosine
triphosphatase (8-oxoGTPase) that hydrolyzes 8-oxo-7,8-
deoxyguanosine-5'-triphosphate (8-oxoGTP) moieties (67). In
rodent and human cells, MTH1 hydrolyzes oxidized purines to
avoid their incorporation into DNA or RNA. MTH1 is thought to
play a crucial role in halting cytotoxicity of oxidized purines (68).
Furthermore, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
administered in MTH1-null mice resulted in greater increase of
8-oxoguanine in mitochondrial DNA from in striatum; this
accumulation was accompanied by greater neuronal dysfunction
than that detected in the wild-type mice (69).

One study with MTH1-deficient cells published that MTH1
lessens the buildup of 8-oxo-guanine in nuclear and
mitochondrial DNA from mouse brain (70), therefore, protecting
the brain from oxidative stress. Consistently, MTH1-null mouse
fibroblasts had high susceptibility to H2O2-induced cell death
accompanied by an ongoing accumulation of 8-oxo-guanine in
nuclear and mitochondrial DNA (71). In previous studies,
cortical neurons prepared from MTH1 (8-oxo-dGTPase)/OGG1
(8-oxoG DNA glycosylase)-double deficient adult mouse brains
exhibited reduced in vitro neuritogenesis (72). In another study,
transgenic expression of human MTH1 inhibited the
neurodegenerative process by halting accumulation of 8-oxo-7,8-
dihydroguanine in neuronal mitochondrial genomes,
indicating that upregulation of MTH1 expression may be useful
for neurons (73).

Similar to the current study, some previous reports indicated
that rotenone-induced parkinsonism is associated with oxidative
impairment. For instance, one study indicated that systemic

![Fig. 7. Effect of *T. terrestris* extract (5 or 10 mg/kg) on DNA damage. (A): DNA laddering assay: 1) a ladder for vehicle
group, 2) a ladder from rotenone group, 3) and 4) ladders from rotenone + TTE (5 and 10 mg/kg) groups. 5) and 6) ladders
from mice received per se treatment with *T. terrestris* extract (10 mg per kg). (B): Assay for 8-OH-dG and (C): MTH1 in
striatal samples Data are mean ± SD and were analyzed using one-way ANOVA and Tukey’s test. P-value < 0.05 was set as
the accepted level of significance. * Compared to vehicle group, † compared to rotenone group, †† compared to rotenone
+ TTE (5 mg/kg) group.](image)
administration of rotenone led to an increase in cortical and striatal protein carbonyls and reduced hippocampal total thiols in mice (55). Another study indicated significant increases in cerebellar and striatal levels of ROS, MDA, hydroperoxides and NO levels in addition to significant decreases in activity levels of antioxidant enzymes, the levels of GSH, acetylcarnelatingase and mitochondrial dysfunctions. The two studies confirmed a state of oxidative stress (74).

One research team inspected the alterations in metallocthionein expression by systemic administration of rotenone for 6 weeks in the striatum of C57BL mice. The authors found greater expression of metallocthioneins, which are thought to defend dopaminergic neurons against oxidative stress, with astrocyte activation in the striatum (75). One in vitro study revealed that compared with the blank control, 1 μM rotenone treatment in BV2 microglia significantly increased intracellular ROS by approximately 1.99-fold (76). Similarly, rotenone reportedly increased MDA levels and protein oxidation in cell and Drosophila models of PD (77).

Glia cells protect neurons from damage. Thus, glial cells are targeted by numerous insults in the nervous system (78). The current results indicated that rotenone injection in mice led to activation of microglia cells, as demonstrated by upregulation of CD11b expression. Neuronal damage in PD is linked to a chronic state of inflammation (79) as well as reactive microgliosis and astrogliosis (80). Activation of microglia may underlie the oxidative injury that contributes to neurotoxicity of rotenone (78).

Various enzymes, like NADPH oxidase, are activated in microglia and produce ROS that initiate redox signaling and in turn intensify the pro-inflammatory cascade (81).

Since the SN contains a high density of microglial cells, reactive microglia have been associated with the selective neurodegeneration observed in PD (82, 83). In vitro, rotenone-induced activation of microglia occurred prior to obvious neurodegeneration (84). Furthermore, rotenone recapitulates the activated phenotype, leading to an alteration of cellular function towards releasing cytotoxic factors directed at destructing attacking pathogens (85, 86). Hence, the existence of active microglia is a valuable marker of current neuronal injury (87).

Experimental and clinical studies consider neuroinflammation is implicated in neurodegeneration and neuropsychiatric dysfunction subsequent to single or repetitive traumatic injury to brain (88-91). Microglia and microglial neurodegeneration are believed to be involved in hypoxia (92), stroke (93) and neuropathic pain (94). In PD, many studies propose that activated microglia participate in the progressive nature (95) and implicate the immune system (96). A large observational study involving 4026 PD cases and 15969 matched controls concluded that chronic use of acetaminophen or aspirin was not linked to a noticeably changed risk of parkinsonism (97).

McGeer et al. provided the first evidence on activation of microglia in the SNpc of parkinsonian brains (98). Unfortunately, post-mortem findings cannot reveal the initiation of microglial activation in the pathology of PD. A recent PET imaging study using isoquinoline, [11C](R)-PK11195, with the ability to bind to peripheral benzodiazepine receptors produced by active microglia, have demonstrated microglial reactivity during early-stage PD (99). In addition, microglial activation and damage to midbrain dopaminergic terminals were correlated. Furthermore, microglial activation in the PD brain was proven to increase pro-inflammatory cytokine expression (100).

Striatal iNOS expression was upregulated in rotenone-treated mice. Our results agree with those of previous reports (53, 101), which indicated that activation of NOS and overproduction of peroxynitrite ions may contribute to PD pathogenesis. Additionally, a community-based case-control study detected a relationship between PD and iNOS gene polymorphisms (102). In contrast, Huerta et al. did not discover a link between PD and polymorphisms in genes encoding eNOS, nNOS and iNOS (103). In addition, NOS-expressing genes have been described to produce excess amounts of NO, which underlies neurodegeneration in PD (104). The expression of iNOS reportedly inversely correlated with TH immunolabeling (105).

Currently, traditional medicinal plants are utilized worldwide for various diseases. The study of these medicines might offer a way to find new medications for PD (106). In the present study, the outcome of administration of TTE for 17 days on locomotor dysfunction was tested and considerable improvements were found. Moreover, TTE-treated mice displayed a significant rise in their nigrostriatal dopamine levels. In contrast, results showed the decreased numbers of TH-positive cells was ameliorated by TTE.

Moreover, mice treated with the higher dose of TTE displayed a decline in MDA levels with increases in GSH, CAT and SOD, which revealed that TTE protected against oxidative damage. Similarly, a myocardial protective action of tribulosin was documented against ischemic/reperfusion injury through antioxidant and antiapoptotic effect (107). These findings agree with those claimed that TTE protects against lipid peroxidation in diabetic rats (23). Furthermore, TTE protects against mercuric chloride nephrotoxicity in mice through anti-oxidative effects by modulating MDA, GSH, SOD and CAT (22). TTE also decreased hypoxia-reoxygenation induced apoptosis in rat cortical neurons (108). Other findings support the protective privileges of TTE on cerebral architecture in a rabbit model of diet-induced hyperlipidemia (109). In accordance, TTE reportedly exerts a neuroprotective effect in rats exposed to middle cerebral artery occlusion that was mediated by inhibition of inflammatory mediators (110). In accordance, the mechanisms of gross saponins of TT against myocardial apoptosis were confirmed to be linked to inhibition of the mitochondrial apoptosis pathway (111). Another study confirmed that TTE ameliorates ischemic insults in a cell-based (H9c2) myocardial ischemia model by safeguarding mitochondrial function (112).

As revealed in the present study, TTE exerted an influence on microglia as demonstrated by a reduction in the expression of CD11b, iNOS and COX-2 mRNA levels. Hence, we illustrated a neuroprotective role for TTE in rotenone parkinsonian mice. experimental PD in mice. The current findings document a novel oxidative damage. Similarly, a myocardial protective action of tribulosin was documented against ischemic/reperfusion injury through antioxidant and antiapoptotic effect (107). These findings agree with those claimed that TTE protects against lipid peroxidation in diabetic rats (23). Furthermore, TTE protects against mercuric chloride nephrotoxicity in mice through anti-oxidative effects by modulating MDA, GSH, SOD and CAT (22). TTE also decreased hypoxia-reoxygenation induced apoptosis in rat cortical neurons (108). Other findings support the protective privileges of TTE on cerebral architecture in a rabbit model of diet-induced hyperlipidemia (109). In accordance, TTE reportedly exerts a neuroprotective effect in rats exposed to middle cerebral artery occlusion that was mediated by inhibition of inflammatory mediators (110). In accordance, TTE protected against lipid peroxidation in diabetic rats (23). Furthermore, TTE protects against mercuric chloride nephrotoxicity in mice through anti-oxidative effects by modulating MDA, GSH, SOD and CAT (22). TTE also decreased hypoxia-reoxygenation induced apoptosis in rat cortical neurons (108). Other findings support the protective privileges of TTE on cerebral architecture in a rabbit model of diet-induced hyperlipidemia (109). In accordance, TTE reportedly exerts a neuroprotective effect in rats exposed to middle cerebral artery occlusion that was mediated by inhibition of inflammatory mediators (110). In accordance, the mechanisms of gross saponins of TT against myocardial apoptosis were confirmed to be linked to inhibition of the mitochondrial apoptosis pathway (111).

In conclusion, the current study provided evidence that oxidative damage in nucleic acid is a key risk factor for experimental PD in mice. The current findings document a novel neuroprotective role for TTE in rotenone parkinsonian mice. This action was, at least in part, related to the antioxidant and anti-inflammatory action of TTE. Furthermore, we verified the influence of TTE in suppressing microglial activation as a target for the alleviation of neuronal damage in the rotenone PD model.

This study was carried out at Suez Canal University, Ismailia, Egypt.

Acknowledgements: Authors wish to acknowledge the Egyptian Knowledge Bank for facilitating the language editing process for this article via Springer-Nature.

Conflict of interests: None declared.
REFERENCES

37. Khatri DK, Juvekar AR. Neuroprotective effect of curcumin as evidenced by abrogation of rotenone-induced motor deficits,

Received: June 25, 2018
Accepted: December 30, 2018

Author’s address: Dr. Sawsan A Zaitone, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Current address: Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
E-mail: sawsan_zaytoon@pharm.suez.edu.eg